All Title Author
Keywords Abstract

Mathematics  2008 

Poisson geometry and first integrals of geostrophic equations

DOI: 10.1016/j.physd.2008.03.001

Full-Text   Cite this paper   Add to My Lib


We describe first integrals of geostrophic equations, which are similar to the enstrophy invariants of the Euler equation for an ideal incompressible fluid. We explain the geometry behind this similarity, give several equivalent definitions of the Poisson structure on the space of smooth densities on a symplectic manifold, and show how it can be obtained via the Hamiltonian reduction from a symplectic structure on the diffeomorphism group.


comments powered by Disqus