All Title Author
Keywords Abstract

Mathematics  2015 

A generalization of Onsager's reciprocity relations to gradient flows with nonlinear mobility

Full-Text   Cite this paper   Add to My Lib


Onsager's 1931 `reciprocity relations' result connects microscopic time-reversibility with a symmetry property of corresponding macroscopic evolution equations. Among the many consequences is a variational characterization of the macroscopic evolution equation as a gradient-flow, steepest-ascent, or maximal-entropy-production equation. Onsager's original theorem is limited to close-to-equilibrium situations, with a Gaussian invariant measure and a linear macroscopic evolution. In this paper we generalize this result beyond these limitations, and show how the microscopic time-reversibility leads to natural generalized symmetry conditions, which take the form of generalized gradient flows.


comments powered by Disqus

Contact Us


微信:OALib Journal