All Title Author
Keywords Abstract

Mathematics  2013 

Quantum speed limits and optimal Hamiltonians for driven systems in mixed states

DOI: 10.1088/1751-8113/47/21/215301

Full-Text   Cite this paper   Add to My Lib


Inequalities of Mandelstam-Tamm and Margolus-Levitin type provide lower bounds on the time it takes for a quantum system to evolve from one state into another. Knowledge of such bounds, called quantum speed limits, is of utmost importance in virtually all areas of physics, where determination of the minimum time required for a quantum process is of interest. Most Mandelstam-Tamm and Margolus-Levitin inequalities found in the literature have been derived from growth estimates for the Bures length, which is a statistical distance measure. In this paper we derive such inequalities by differential geometric methods, and we compare the obtained quantum speed limits with those involving the Bures length. We also characterize the Hamiltonians which optimize the evolution time for generic finite-level quantum systems.


comments powered by Disqus

Contact Us


微信:OALib Journal