All Title Author
Keywords Abstract

Mathematics  2013 

Extreme values for characteristic radii of a Poisson-Voronoi tessellation

Full-Text   Cite this paper   Add to My Lib

Abstract:

A homogeneous Poisson-Voronoi tessellation of intensity $\gamma$ is observed in a convex body $W$. We associate to each cell of the tessellation two characteristic radii: the inradius, i.e. the radius of the largest ball centered at the nucleus and included in the cell, and the circumscribed radius, i.e. the radius of the smallest ball centered at the nucleus and containing the cell. We investigate the maximum and minimum of these two radii over all cells with nucleus in $W$. We prove that when $\gamma\rightarrow\infty$, these four quantities converge to Gumbel or Weibull distributions up to a rescaling. Moreover, the contribution of boundary cells is shown to be negligible. Such approach is motivated by the analysis of the global regularity of the tessellation. In particular, consequences of our study include the convergence to the simplex shape of the cell with smallest circumscribed radius and an upper-bound for the Hausdorff distance between $W$ and its so-called Poisson-Voronoi approximation.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal