全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Two-Sphere Partition Functions and Gromov-Witten Invariants

Full-Text   Cite this paper   Add to My Lib

Abstract:

Many N=(2,2) two-dimensional nonlinear sigma models with Calabi-Yau target spaces admit ultraviolet descriptions as N=(2,2) gauge theories (gauged linear sigma models). We conjecture that the two-sphere partition function of such ultraviolet gauge theories -- recently computed via localization by Benini et al. and Doroud et al. -- yields the exact K\"ahler potential on the quantum K\"ahler moduli space for Calabi-Yau threefold target spaces. In particular, this allows one to compute the genus zero Gromov-Witten invariants for any such Calabi-Yau threefold without the use of mirror symmetry. More generally, when the infrared superconformal fixed point is used to compactify string theory, this provides a direct method to compute the spacetime K\"ahler potential of certain moduli (e.g., vector multiplet moduli in type IIA), exactly in {\alpha}'. We compute these quantities for the quintic and for R{\o}dland's Pfaffian Calabi-Yau threefold and find agreement with existing results in the literature. We then apply our methods to a codimension four determinantal Calabi-Yau threefold in P^7, recently given a nonabelian gauge theory description by the present authors, for which no mirror Calabi-Yau is currently known. We derive predictions for its Gromov-Witten invariants and verify that our predictions satisfy nontrivial geometric checks.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133