All Title Author
Keywords Abstract

Mathematics  2011 

Tokunaga and Horton self-similarity for level set trees of Markov chains

DOI: 10.1016/j.chaos.2011.11.006

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Horton and Tokunaga branching laws provide a convenient framework for studying self-similarity in random trees. The Horton self-similarity is a weaker property that addresses the principal branching in a tree; it is a counterpart of the power-law size distribution for elements of a branching system. The stronger Tokunaga self-similarity addresses so-called side branching. The Horton and Tokunaga self-similarity have been empirically established in numerous observed and modeled systems, and proven for two paradigmatic models: the critical Galton-Watson branching process with finite progeny and the finite-tree representation of a regular Brownian excursion. This study establishes the Tokunaga and Horton self-similarity for a tree representation of a finite symmetric homogeneous Markov chain. We also extend the concept of Horton and Tokunaga self-similarity to infinite trees and establish self-similarity for an infinite-tree representation of a regular Brownian motion. We conjecture that fractional Brownian motions are also Tokunaga and Horton self-similar, with self-similarity parameters depending on the Hurst exponent.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal