All Title Author
Keywords Abstract

Mathematics  2010 

Large deviations for self-intersection local times in subcritical dimensions

Full-Text   Cite this paper   Add to My Lib


Let $(X_t,t\geq 0)$ be a random walk on $\mathbb{Z}^d$. Let $ l_t(x)= \int_0^t \delta_x(X_s)ds$ be the local time at site $x$ and $ I_t= \sum\limits_{x\in\mathbb{Z}^d} l_t(x)^p $ the p-fold self-intersection local time (SILT). Becker and K\"onig have recently proved a large deviations principle for $I_t$ for all $(p,d)\in\mathbb{R}^d\times\mathbb{Z}^d$ such that $p(d-2)<2$. We extend these results to a broader scale of deviations and to the whole subcritical domain $p(d-2)


comments powered by Disqus

Contact Us


微信:OALib Journal