全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Properties of the extremal solution for a fourth-order elliptic problem

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\lambda^{*}>0$ denote the largest possible value of $\lambda$ such that $$ \{{array}{lllllll} \Delta^{2}u=\frac{\lambda}{(1-u)^{p}} & \{in}\ \ B, 01$ and $n$ is the exterior unit normal vector. We show that for $\lambda=\lambda^{*}$ this problem possesses a unique weak solution $u^{*}$, called the extremal solution. We prove that $u^{*}$ is singular when $n\geq 13$ for $p$ large enough and $1-C_{0}r^{\frac{4}{p+1}}\leq u^{*}(x)\leq 1-r^{\frac{4}{p+1}}$ on the unit ball, where $ C_{0}:=(\lambda^{*}/\bar{\lambda})^{\frac{1}{p+1}}$ and $\bar{\lambda}:=\frac{8(p-1)}{(p+1)^{2}}[n-\frac{2(p-1)}{p+1}][n-\frac{4p}{p+1}]$. Our results actually complete part of the open problem which \cite{D} lef

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133