All Title Author
Keywords Abstract

Mathematics  2008 

Smoothness in Relative Geometry

Full-Text   Cite this paper   Add to My Lib

Abstract:

In \cite{tva}, Bertrand Toen and Michel Vaquie defined a scheme theory for a closed monoidal category $(C,\otimes,1)$. In this article, we define a notion of smoothness in this relative (and not necesarilly additive) context which generalizes the notion of smoothness in the category of rings. This generalisation consists practically in changing homological finiteness conditions into homotopical ones using Dold-Kahn correspondance. To do this, we provide the category $sC$ of simplicial objects in a monoidal category and all the categories $sA-mod$, $sA-alg$ ($a\in sComm(C)$) with compatible model structures using the work of Rezk in \cite{r}. We give then a general notions of smoothness in $sComm(C)$. We prove that this notion is a generalisation of the notion of smooth morphism in the category of rings and provide some examples of smooth morphisms in $N-alg$, $Comm(Set)$ and Comm(C).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal