All Title Author
Keywords Abstract

Mathematics  2006 

Generalized tilting modules with finite injective dimension

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $R$ be a left noetherian ring, $S$ a right noetherian ring and $_RU$ a generalized tilting module with $S={\rm End}(_RU)$. The injective dimensions of $_RU$ and $U_S$ are identical provided both of them are finite. Under the assumption that the injective dimensions of $_RU$ and $U_S$ are finite, we describe when the subcategory $\{{\rm Ext}_S^n(N, U)|N$ is a finitely generated right $S$-module$\}$ is closed under submodules. As a consequence, we obtain a negative answer to a question posed by Auslander in 1969. Finally, some partial answers to Wakamatsu Tilting Conjecture are given.

Full-Text

comments powered by Disqus