All Title Author
Keywords Abstract

Physics  2004 

Ab-initio theory of superconductivity - I: Density functional formalism and approximate functionals

DOI: 10.1103/PhysRevB.72.024545

Full-Text   Cite this paper   Add to My Lib

Abstract:

A novel approach to the description of superconductors in thermal equilibrium is developed within a formally exact density-functional framework. The theory is formulated in terms of three ``densities'': the ordinary electron density, the superconducting order parameter, and the diagonal of the nuclear N-body density matrix. The electron density and the order parameter are determined by Kohn-Sham equations that resemble the Bogoliubov-de Gennes equations. The nuclear density matrix follows from a Schroedinger equation with an effective N-body interaction. These equations are coupled to each other via exchange-correlation potentials which are universal functionals of the three densities. Approximations of these exchange-correlation functionals are derived using the diagrammatic techniques of many-body perturbation theory. The bare Coulomb repulsion between the electrons and the electron-phonon interaction enter this perturbative treatment on the same footing. In this way, a truly ab-initio description is achieved which does not contain any empirical parameters.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal