All Title Author
Keywords Abstract

Physics  2001 

Axisymmetric equilibria of a gravitating plasma with incompressible flows

DOI: 10.1080/03091920108203409

Full-Text   Cite this paper   Add to My Lib


It is found that the ideal magnetohydrodynamic equilibrium of an axisymmetric gravitating magnetically confined plasma with incompressible flows is governed by a second-order elliptic differential equation for the poloidal magnetic flux function containing five flux functions coupled with a Poisson equation for the gravitation potential, and an algebraic relation for the pressure. This set of equations is amenable to analytic solutions. As an application, the magnetic-dipole static axisymmetric equilibria with vanishing poloidal plasma currents derived recently by Krasheninnikov, Catto, and Hazeltine [Phys. Rev. Lett. {\bf 82}, 2689 (1999)] are extended to plasmas with finite poloidal currents, subject to gravitating forces from a massive body (a star or black hole) and inertial forces due to incompressible sheared flows. Explicit solutions are obtained in two regimes: (a) in the low-energy regime $\beta_0\approx \gamma_0\approx \delta_0 \approx\epsilon_0\ll 1$, where $\beta_0$, $\gamma_0$, $\delta_0$, and $\epsilon_0$ are related to the thermal, poloidal-current, flow and gravitating energies normalized to the poloidal-magnetic-field energy, respectively, and (b) in the high-energy regime $\beta_0\approx \gamma_0\approx \delta_0 \approx\epsilon_0\gg 1$. It turns out that in the high-energy regime all four forces, pressure-gradient, toroidal-magnetic-field, inertial, and gravitating contribute equally to the formation of magnetic surfaces very extended and localized about the symmetry plane such that the resulting equilibria resemble the accretion disks in astrophysics.


comments powered by Disqus

Contact Us


微信:OALib Journal