All Title Author
Keywords Abstract

Physics  1998 

Infinite-Dimensional Linear Dynamical Systems with Chaoticity

Full-Text   Cite this paper   Add to My Lib


The authors present two results on infinite-dimensional linear dynamical systems with chaoticity. One is about the chaoticity of the backward shift map in the space of infinite sequences on a general Fr\'{e}chet space. The other is about the chaoticity of a translation map in the space of real continuous functions. The chaos is shown in the senses of both Li-Yorke and Wiggins. Treating dimensions as freedoms, the two results imply that in the case of an infinite number of freedoms, a system may exhibit complexity even when the action is linear. Finally, the authors discuss physical applications of infinite-dimensional linear chaotic dynamical systems.


comments powered by Disqus

Contact Us


微信:OALib Journal