
Physics 2010
LISA Sensitivities to Gravitational Waves from Relativistic Metric Theories of GravityDOI: 10.1103/PhysRevD.82.122003 Abstract: The direct observation of gravitational waves will provide a unique tool for probing the dynamical properties of highly compact astrophysical objects, mapping ultrarelativistic regions of spacetime, and testing Einstein's general theory of relativity. LISA (Laser Interferometer Space Antenna), a joint NASAESA mission to be launched in the next decade, will perform these scientific tasks by detecting and studying lowfrequency cosmic gravitational waves through their influence on the phases of six modulated laser beams exchanged between three remote spacecraft. By directly measuring the polarization components of the waves LISA will detect, we will be able to test Einstein's theory of relativity with good sensitivity. Since a gravitational wave signal predicted by the most general relativistic metric theory of gravity accounts for {\it six} polarization modes (the usual two Einstein's tensor polarizations as well as two vector and two scalar wave components), we have derived the LISA TimeDelay Interferometric responses and estimated their sensitivities to vector and scalartype waves. We find that (i) at frequencies larger than roughly the inverse of the oneway light time ($\approx 6 \times 10^{2} $ Hz.) LISA is more than ten times sensitive to scalarlongitudinal and vector signals than to tensor and scalartransverse waves, and (ii) in the low part of its frequency band is equally sensitive to tensor and vector waves and somewhat less sensitive to scalar signals.
