全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

Variational Data Assimilation via Sparse Regularization

DOI: 10.3402/tellusa.v66.21789

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper studies the role of sparse regularization in a properly chosen basis for variational data assimilation (VDA) problems. Specifically, it focuses on data assimilation of noisy and down-sampled observations while the state variable of interest exhibits sparsity in the real or transformed domain. We show that in the presence of sparsity, the $\ell_{1}$-norm regularization produces more accurate and stable solutions than the classic data assimilation methods. To motivate further developments of the proposed methodology, assimilation experiments are conducted in the wavelet and spectral domain using the linear advection-diffusion equation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133