All Title Author
Keywords Abstract

Physics  2001 

Globular cluster systems II: On the formation of old globular clusters and their sites of formation

DOI: 10.1086/320397

Full-Text   Cite this paper   Add to My Lib

Abstract:

We studied the metal-poor globular cluster (GC) populations of a large variety of galaxies (47 galaxies spanning about 10mag in absolute brightness) and compared their mean [Fe/H] with the properties of the host galaxies. The mean [Fe/H] of the systems lie in the -1.65<[Fe/H]<-1.20 range (74% of the population). Using only GC systems with more than 6 objects detected, 85% of the population lie within -1.65<[Fe/H]<-1.20. The relation between the mean [Fe/H] of the metal-poor GC systems and the Mv of their host galaxies presents a very low slope which includes zero. An analysis of the correlation of the mean [Fe/H] with other galaxy properties also leads to the conclusion that no strong correlation exists. The lack of correlation suggests a formation of all metal-poor GC in similar gas fragments. A weak correlation might exist between mean [Fe/H] of the metal-poor GC and host galaxy metallicity. This would imply that some fragments in which metal-poor GC formed were already embedded in the larger dark matter halo of the final galaxy (as oppose to being independent satellites that were accreted later). Our result suggests a homogeneous formation of metal-poor GC in all galaxies, in typical fragments of masses around 10^9-10^10 solar masses with very similar metallicities, compatible with hierarchical formation scenarios for galaxies. We compared the mean [Fe/H] of the metal-poor GC populations with the typical metallicities of high-z objects. If we add the constraint that GC need a high column density of gas to form, DLAs are the most likely sites for the formation of metal-poor GC populations.

Full-Text

comments powered by Disqus