All Title Author
Keywords Abstract

Physics  2006 

The Missing Link: Magnetism and Superconductivity

DOI: 10.1103/PhysRevB.75.054523

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effect of magnetic moments on superconductivity has long been a controversial subject in condensed matter physics. While Matthias and collaborators experimentally demonstrated the destruction of superconductivity in La by the addition of magnetic moments (Gd), it has since been suggested that magnetic fluctuations are in fact responsible for the development of superconducting order in other systems. Currently this debate is focused on several families of unconventional superconductors including high-Tc cuprates, borocarbides as well as heavy fermion systems where magnetism and superconductivity are known to coexist. Here we report a novel aspect of competition and coexistence of these two competing orders in an interesting class of heavy fermion compounds, namely the 1-1-5 series: CeTIn5 where T=Co, Ir, or Rh. Our optical experiments indicate the existence of regions in momentum space where local moments remain unscreened. The extent of these regions in momentum space appears to control both the normal and superconducting state properties in the 1-1-5 family of heavy fermion (HF) superconductors.

Full-Text

comments powered by Disqus