全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2001 

The geometry of the classical solutions of the Garnier systems

Full-Text   Cite this paper   Add to My Lib

Abstract:

Our aim is to find a general approach to the theory of classical solutions of the Garnier system in $n$-variables, ${\cal G}_n$, based on the Riemann-Hilbert problem and on the geometry of the space of isomonodromy deformations. Our approach consists in determining the monodromy data of the corresponding Fuchsian system that guarantee to have a classical solution of the Garnier system ${\cal G}_n$. This leads to the idea of the reductions of the Garnier systems. We prove that if a solution of the Garnier system ${\cal G}_{n}$ is such that the associated Fuchsian system has $l$ monodromy matrices equal to $\pm\ID$, then it can be reduced classically to a solution of a the Garnier system with $n-l$ variables ${\cal G}_{n-l}$. When $n$ monodromy matrices are equal to $\pm\ID$, we have classical solutions of ${\cal G}_n$. We give also another mechanism to produce classical solutions: we show that the solutions of the Garnier systems having reducible monodromy groups can be reduced to the classical solutions found by Okamoto and Kimura in terms of Lauricella hypergeometric functions. In the case of the Garnier system in 1-variables, i.e. for the Painlev\'e VI equation, we prove that all classical non-algebraic solutions have either reducible monodromy groups or at least one monodromy matrix equal to $\pm\ID$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133