All Title Author
Keywords Abstract

Physics  2000 

Nested Bethe Ansatz and Finite Dimensional Canonical Commutation Relations

Full-Text   Cite this paper   Add to My Lib


Recent interest in discrete, classical integrable systems has focused on their connection to quantum integrable systems via the Bethe equations. In this note, solutions to the rational nested Bethe ansatz (RNBA) equations are constructed using the ``completed Calogero-Moser phase space'' of matrices which satisfy a finite dimensional analogue of the canonical commutation relationship. A key feature is the fact that the RNBA equations are derived only from this commutation relationship and some elementary linear algebra. The solutions constructed in this way inherit continuous and discrete symmetries from the CM phase space.


comments powered by Disqus

Contact Us


微信:OALib Journal