All Title Author
Keywords Abstract

Physics  2014 

Supernova 1987A: neutrino-driven explosions in three dimensions and light curves

DOI: 10.1051/0004-6361/201425513

Full-Text   Cite this paper   Add to My Lib


The well-studied type IIP SN 1987A, produced by the explosion of a blue supergiant (BSG) star, is a touchstone for massive-star evolution, simulations of neutrino-driven explosions, and modeling of light curves and spectra. In the framework of the neutrino-driven mechanism, we study the dependence of explosion properties on the structure of four different BSGs and compare the corresponding light curves with observations of SN 1987A. We perform 3D simulations with the PROMETHEUS code until about one day and map the results to the 1D code CRAB for the light curve calculations. All of our 3D models with explosion energies compatible with SN 1987A produce 56Ni in rough agreement with the amount deduced from fitting the radioactively powered light-curve tail. One of the progenitors yields maximum velocities of ~3000 km/s for the bulk of ejected 56Ni, consistent with observations. In all of our models inward mixing of hydrogen during the 3D evolution leads to minimum H-velocities below 100 km/s, in good agreement with spectral observations. The considered BSG models, 3D explosion simulations, and light-curve calculations can thus explain basic observational features of SN 1987A. However, all progenitors have too large pre-SN radii to reproduce the narrow initial luminosity peak, and the structure of their outer layers is not suitable to match the observed light curve during the first 30-40 days. Only one stellar model has a structure of the He core and the He/H composition interface that enables sufficient outward mixing of 56Ni and inward mixing of hydrogen to produce a good match of the dome-like shape of the observed light-curve maximum. But this model falls short of the He-core mass of 6 Msun inferred from the absolute luminosity of the pre-SN star. The lack of an adequate pre-SN model for SN 1987A is a pressing challenge for the theory of massive-star evolution. (Abridged)


comments powered by Disqus

Contact Us


微信:OALib Journal