All Title Author
Keywords Abstract


Detection of M-Sequences from Spike Sequence in Neuronal Networks

DOI: 10.1155/2012/862579

Full-Text   Cite this paper   Add to My Lib

Abstract:

In circuit theory, it is well known that a linear feedback shift register (LFSR) circuit generates pseudorandom bit sequences (PRBS), including an M-sequence with the maximum period of length. In this study, we tried to detect M-sequences known as a pseudorandom sequence generated by the LFSR circuit from time series patterns of stimulated action potentials. Stimulated action potentials were recorded from dissociated cultures of hippocampal neurons grown on a multielectrode array. We could find several M-sequences from a 3-stage LFSR circuit (M3). These results show the possibility of assembling LFSR circuits or its equivalent ones in a neuronal network. However, since the M3 pattern was composed of only four spike intervals, the possibility of an accidental detection was not zero. Then, we detected M-sequences from random spike sequences which were not generated from an LFSR circuit and compare the result with the number of M-sequences from the originally observed raster data. As a result, a significant difference was confirmed: a greater number of “0–1” reversed the 3-stage M-sequences occurred than would have accidentally be detected. This result suggests that some LFSR equivalent circuits are assembled in neuronal networks. 1. Introduction The brain is recognized as a very large-scale network system in which the basic element is a neuron [1–4]. In recent studies of the memory mechanism in the brain, investigating a formation of information communication is more essential than specifying the region of memory in the brain [4]. The basic study of communication method in the brain is to clarify the coding mechanism of information. Therefore varieties of coding for neuronal information, for example, rate code, were proposed in previous studies [5–15]. The first theory of information architecture is cell-assembly theory proposed by Hebb in 1949 [16, 17]. Abeles postulated that “synfire chains” of spike with relatively fixed intervals could travel through the brain representing information and various behavioral states [18–21]. Rolston and others have observed a robust set of spontaneously repeating spatiotemporal patterns of neuronal activity using a template matching algorithm [22]. Then, the question arises as to how the data communication is controlled and what and how the form of controlled data communication is constructed. This question is essential to investigate the mechanism, how information is communicated in more detail. To resolve this question, decoding sequence pattern in one block of spike activity (analyzing time series patterns of

References

[1]  P. Bonifazi, M. Goldin, M. A. Picardo et al., “GABAergic hub neurons orchestrate synchrony in developing hippocampal networks,” Science, vol. 326, no. 5958, pp. 1419–1424, 2009.
[2]  C. Lecerf, “The double loop as a model of a learning neural system,” in Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics (SCI '98), vol. 1, pp. 587–594, 1998.
[3]  Y. Choe, “Analogical cascade: a theory on the role of the thalamo-cortical loop in brain function,” Neurocomputing, vol. 52–54, pp. 713–719, 2003.
[4]  S. Tamura, Y. Mizuno-Matsumoto, Y. W. Chen, and K. Nakamura, “Association and abstraction on neural circuit loop and coding,” in Proceedings of the 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP '09), pp. 414–417, IEEE Computer Society, September 2009.
[5]  S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human visual system,” Nature, vol. 381, no. 6582, pp. 520–522, 1996.
[6]  M. N. Shadlen and W. T. Newsome, “The variable discharge of cortical neurons: implications for connectivity, computation, and information coding,” Journal of Neuroscience, vol. 18, no. 10, pp. 3870–3896, 1998.
[7]  D. J. Mar, C. C. Chow, W. Gerster, R. W. Adams, and J. J. Collins, “Noise shaping in populations of coupled model neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 18, pp. 10450–10455, 1999.
[8]  S. C. De Oliveira, A. Thiele, and K. P. Hoffmann, “Synchronization of neuronal activity during stimulus expectation in a direction discrimination task,” Journal of Neuroscience, vol. 17, no. 23, pp. 9248–9260, 1997.
[9]  A. Riehle, S. Grün, M. Diesmann, and A. Aertsen, “Spike synchronization and rate modulation differentially involved in motor cortical function,” Science, vol. 278, no. 5345, pp. 1950–1953, 1997.
[10]  P. N. Steinmetz, A. Roy, P. J. Fitzgerald, S. S. Hsiao, K. O. Johnson, and E. Niebur, “Attention modulates synchronized neuronal firing in primate somatosensory cortex,” Nature, vol. 404, no. 6774, pp. 187–190, 2000.
[11]  P. Fries, J. H. Reynolds, A. E. Rorie, and R. Desimone, “Modulation of oscillatory neuronal synchronization by selective visual attention,” Science, vol. 291, no. 5508, pp. 1560–1563, 2001.
[12]  R. W. Friedrich, C. J. Habermann, and G. Laurent, “Multiplexing using synchrony in the zebrafish olfactory bulb,” Nature Neuroscience, vol. 7, no. 8, pp. 862–871, 2004.
[13]  N. Masuda and K. Aihara, “Dual coding hypotheses for neural information representation,” Mathematical Biosciences, vol. 207, no. 2, pp. 312–321, 2007.
[14]  M. C. W. Van Rossum, G. G. Turrigiano, and S. B. Nelson, “Fast propagation of firing rates through layered networks of noisy neurons,” Journal of Neuroscience, vol. 22, no. 5, pp. 1956–1966, 2002.
[15]  T. P. Vogels and L. F. Abbott, “Signal propagation and logic gating in networks of integrate-and-fire neurons,” Journal of Neuroscience, vol. 25, no. 46, pp. 10786–10795, 2005.
[16]  D. O. Hebb, Textbook of Phycology, Saunders, Philadelphia, Pa, USA, 3rd edition, 1972.
[17]  A. Lansner, “Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations,” Trends in Neurosciences, vol. 32, no. 3, pp. 178–186, 2009.
[18]  M. Abeles, Corticonics, Neural Circuits of the Cerebral Cortex, Cambridge University Press, Cambridge, UK, 1991.
[19]  Y. Aviel, C. Mehring, M. Abeles, and D. Horn, “On embedding synfire chains in a balanced network,” Neural Computation, vol. 15, no. 6, pp. 1321–1340, 2003.
[20]  Y. Aviel, D. Horn, and M. Abeles, “Synfire waves in small balanced networks,” Neurocomputing, vol. 58–60, pp. 123–127, 2004.
[21]  Y. Ikegaya, G. Aaron, R. Cossart et al., “Synfire chains and cortical songs: temporal modules of cortical activity,” Science, vol. 304, no. 5670, pp. 559–564, 2004.
[22]  J. D. Rolston, D. A. Wagenaar, and S. M. Potter, “Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures,” Neuroscience, vol. 148, no. 1, pp. 294–303, 2007.
[23]  S. W. Golomb and Gong, G. Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar, Cambridge University Press, 2005.
[24]  T. Kamimura, K. Nakamura, K. Yoneda et al., “Information communication in brain based on memory loop neural circuit,” in Proceedings of the 2nd International Conference on Software Engineering and Data Mining (SEDM '10), vol. 5, pp. 710–714, June 2010.
[25]  P. Bonifazi, M. E. Ruaro, and V. Torre, “Statistical properties of information processing in neuronal networks,” European Journal of Neuroscience, vol. 22, no. 11, pp. 2953–2964, 2005.
[26]  C. Hosokawa, S. N. Kudoh, A. Kiyohara, and T. Taguchi, “Resynchronization in neuronal network divided by femtosecond laser processing,” NeuroReport, vol. 19, no. 7, pp. 771–775, 2008.
[27]  P. L. Baljon, M. Chiappalone, and S. Martinoia, “Interaction of electrically evoked responses in networks of dissociated cortical neurons,” Physical Review E, vol. 80, no. 3, Article ID 031906, 10 pages, 2009.
[28]  D. A. Wagenaar, J. Pine, and S. M. Potter, “Effective parameters for stimulation of dissociated cultures using multi-electrode arrays,” Journal of Neuroscience Methods, vol. 138, no. 1-2, pp. 27–37, 2004.
[29]  S. Tamura, T. Miyoshi, H. Sawai, and Y. Mizuno-Matsumoto, “Random bin for analyzing neuron spike trains,” Computational Intelligence and Neuroscience, vol. 2012, Article ID 153496, 11 pages.
[30]  M. Rivlin-Etzion, Y. Ritov, G. Heimer, H. Bergman, and I. Bar-Gad, “Local shuffling of spike trains boosts the accuracy of spike train spectral analysis,” Journal of Neurophysiology, vol. 95, no. 5, pp. 3245–3256, 2006.
[31]  M. W. Oram, M. C. Wiener, R. Lestienne, and B. J. Richmond, “Stochastic nature of precisely timed spike patterns in visual system neuronal responses,” Journal of Neurophysiology, vol. 81, no. 6, pp. 3021–3033, 1999.
[32]  A. Mokeichev, M. Okun, O. Barak, Y. Katz, O. Ben-Shahar, and I. Lampl, “Stochastic emergence of repeating cortical motifs in spontaneous membrane potential fluctuations in vivo,” Neuron, vol. 53, no. 3, pp. 413–425, 2007.
[33]  E. M. Izhikevich, “Polychronization: computation with spikes,” Neural Computation, vol. 18, no. 2, pp. 245–282, 2006.
[34]  P. Fromherz and V. Gaede, “Exclusive-OR function of single arborized neuron,” Biological Cybernetics, vol. 69, no. 4, pp. 337–344, 1993.

Full-Text

comments powered by Disqus