All Title Author
Keywords Abstract

Physics  2011 

Geometric Momentum for a Particle on a Curved Surface

Full-Text   Cite this paper   Add to My Lib


When a two-dimensional curved surface is conceived as a limiting case of a curved shell of equal thickness d, where the limit d\rightarrow0 is then taken, the well-known geometric potential is induced by the kinetic energy operator, in fact by the second order partial derivatives. Applying this confining procedure to the momentum operator, in fact to the first order partial derivatives, we find the so-called geometric momentum instead. This momentum is compatible with the Dirac's canonical quantization theory on system with second-class constraints. The distribution amplitudes of the geometric momentum on the spherical harmonics are analytically determined, and they are experimentally testable for rotational states of spherical molecules such as C_{60}.


comments powered by Disqus

Contact Us


微信:OALib Journal