All Title Author
Keywords Abstract

Physics  2011 

The Dynamical and Chemical Evolution of Dwarf Spheroidal Galaxies with GEAR

DOI: 10.1051/0004-6361/201117402

Full-Text   Cite this paper   Add to My Lib


We present a fully parallel chemo-dynamical Tree/SPH code, GEAR, which allows to perform high resolution simulations with detailed chemical diagnostics. Starting from the public version of Gadget-2, we included the complex treatment of the baryon physics: gas cooling, star formation law, chemical evolution and supernovae feedback. We qualified the performances of GEAR with the case of dSph galaxies. GEAR conserves the total energy budget of the systems to better than 5% over 14Gyr and proved excellent convergence of the results with numerical resolution. We showed that models of dSphs in a static Euclidean space, where the expansion of the universe is neglected are valid. In addition, we tackled some of the existing open questions in the field, like the stellar mass fraction of dSphs and its link with the predicted dark matter halo mass function, the effect of the supernova feedback, the spatial distribution of the stellar populations, and the origin of the diversity in star formation histories and chemical abundance patterns. Strong supernovae driven winds seem incompatible with the observed metallicities and luminosities. Despite the fact that newly formed stars are preferentially found in the galaxy central parts, turbulent motions in the gas can quickly erase any metallicity gradient. The variety in dSph properties result from a range of total masses as well as from a dispersion in central densities. The latter is also seen in the haloes emerging from a LCDM cosmogony.


comments powered by Disqus

Contact Us


微信:OALib Journal