All Title Author
Keywords Abstract

Physics  1993 

Effective Lagrangians with Higher Order Derivatives

DOI: 10.1103/PhysRevD.49.6709

Full-Text   Cite this paper   Add to My Lib


The problems that are connected with Lagrangians which depend on higher order derivatives (namely additional degrees of freedom, unbound energy from below, etc.) are absent if effective Lagrangians are considered because the equations of motion may be used to eliminate all higher order time derivatives from the effective interaction term. The application of the equations of motion can be realized by performing field transformations that involve derivatives of the fields. Using the Hamiltonian formalism for higher order Lagrangians (Ostrogradsky formalism), Lagrangians that are related by such transformations are shown to be physically equivalent (at the classical and at the quantum level). The equivalence of Hamiltonian and Lagrangian path integral quantization (Matthews's theorem) is proven for effective higher order Lagrangians. Effective interactions of massive vector fields involving higher order derivatives are examined within gauge noninvariant models as well as within (linearly or nonlinearly realized) spontaneously broken gauge theories. The Stueckelberg formalism, which relates gauge noninvariant to gauge invariant Lagrangians, becomes reformulated within the Ostrogradsky formalism.


comments powered by Disqus

Contact Us


微信:OALib Journal