All Title Author
Keywords Abstract

Physics  2005 

Convergent Iterative Solutions for a Sombrero-Shaped Potential in Any Space Dimension and Arbitrary Angular Momentum

DOI: 10.1016/j.aop.2005.11.009

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present an explicit convergent iterative solution for the lowest energy state of the Schroedinger equation with an $N$-dimensional radial potential $V=\frac{g^2}{2}(r^2-1)^2$ and an angular momentum $l$. For $g$ large, the rate of convergence is similar to a power series in $g^{-1}$.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal