全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2007 

Superlight small bipolarons: a route to room temperature superconductivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Extending the BCS theory towards the strong electron-phonon interaction (EPI), a charged Bose liquid of small bipolarons has been predicted by us with a further prediction that the highest superconducting critical temperature is found in the crossover region of the EPI strength from the BCS-like to bipolaronic superconductivity. Later on we have shown that the unscreened (infinite-range) Froehlich EPI combined with the strong Coulomb repulsion create \emph{superlight} small bipolarons, which are several orders of magnitude lighter than small bipolarons in the Holstein-Hubbard model (HHM) with a zero-range EPI. The analytical and numerical studies of this Coulomb-Froehlich model (CFM) provide the following recipes for room-temperature superconductivity: (a) The parent compound should be an ionic insulator with light ions to form high-frequency optical phonons, (b) The structure should be quasi two-dimensional to ensure poor screening of high-frequency phonons polarized perpendicular to the conducting planes, (c) A triangular lattice is required in combination with strong, on-site Coulomb repulsion to form the small superlight bipolaron, (d) Moderate carrier densities are required to keep the system of small bipolarons close to the Bose-Einstein condensation regime. Clearly most of these conditions are already met in the cuprates.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133