All Title Author
Keywords Abstract

Physics  2009 

Non-local scaling operators with entanglement renormalization

DOI: 10.1103/PhysRevB.82.132411

Full-Text   Cite this paper   Add to My Lib


The multi-scale entanglement renormalization ansatz (MERA) can be used, in its scale invariant version, to describe the ground state of a lattice system at a quantum critical point. From the scale invariant MERA one can determine the local scaling operators of the model. Here we show that, in the presence of a global symmetry $\mathcal{G}$, it is also possible to determine a class of non-local scaling operators. Each operator consist, for a given group element $g\in\mathcal{G}$, of a semi-infinite string $\tGamma_g$ with a local operator $\phi$ attached to its open end. In the case of the quantum Ising model, $\mathcal{G}= \mathbb{Z}_2$, they correspond to the disorder operator $\mu$, the fermionic operators $\psi$ and $\bar{\psi}$, and all their descendants. Together with the local scaling operators identity $\mathbb{I}$, spin $\sigma$ and energy $\epsilon$, the fermionic and disorder scaling operators $\psi$, $\bar{\psi}$ and $\mu$ are the complete list of primary fields of the Ising CFT. Thefore the scale invariant MERA allows us to characterize all the conformal towers of this CFT.


comments powered by Disqus

Contact Us


微信:OALib Journal