
Physics 1998
Stellar Dynamics of Dense Stellar SystemsAbstract: Stellar dynamics is almost unreasonably well suited for an implementation in terms of specialpurpose hardware. Unlike the case of molecular dynamics, stellar dynamics deals exclusively with a longrange force, gravity, which leads to a computational cost scaling as the square of the number of stars involved. While special tricks can lead to a reduction of this cost from $\sim N^2$ to $\sim N\log N$ in the case of very large particle numbers, such tricks are not suitable for all areas within stellar dynamics. When a stellar system is close to equilibrium, and has a very high density, it still pays to compute all interactions on a star by star basis, even for $N=10^5$. Any $cN\log N$ approach would either gloss over the subtle net effects of nearcanceling interactions, driving the evolution of such a system, or would carry a prohibitively large coefficient $c$. This paper presents a brief introduction to the stellar dynamics of dense stellar systems, aimed at researchers using special purpose computers in other branches of physics.
