全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2004 

微生物介导的土壤甲烷循环及全球变化研究

, PP. 411-419

Keywords: 甲烷产生菌,甲烷氧化菌,甲烷循环,全球变化

Full-Text   Cite this paper   Add to My Lib

Abstract:

甲烷是主要的温室气体之一,目前在大气中的含量达1.7×10-6m3·m-3,比工业革命前增加了115%,并以1%年增长速度稳定增长.甲烷吸收太阳远红外光的能力比CO2高20~30倍,对全球增温的贡献率达15%.多年来对大气甲烷的产生、转运和循环以及调控的研究表明,80%以上的甲烷是通过微生物的活动产生的,一部分在进入大气前被微生物吸收利用,这样,大气中甲烷的净含量绝大部分是甲烷产生微生物和甲烷营养微生物相互作用的结果.因此,研究甲烷产生菌和甲烷氧化菌的活动规律和生态学特征,有利于揭示微生物介导的甲烷循环过程,并探索减排的措施.已知有80多种甲烷产生菌和100余种甲烷氧化菌,它们的种类和生态多样性比较广泛,环境差异和波动影响它们的生理代谢活性,从而导致甲烷排放的波动性和不确定性.在未来全球变化条件下,天然湿地作为重要的甲烷源之一,如何响应和反馈环境的变化是研究的重点领域.

References

[1]  Mer J L, Roger P. Production, oxidation, emission and consumption of methane by soils: A review [J]. Eur. J. Soil Biol., 2001, 37: 25-50.
[2]  Garcia J L, Patel B K C, Ollivier B. Taxonomy, phylogenetic and ecological diversity of methanogenic Archaea [J]. Anaerobe, 2000, 6: 205-226.
[3]  Hanson R S, Hanson T E. Methanotrophic bacteria [J]. Microbiol. Rev., 1996, 60(2): 439-471.
[4]  Segers R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes [J]. Biogeochemistry, 1998, 41: 23-51.
[5]  Wang Dali. The effect of atmospheric CO2 enrichments on global methane emission[J]. Chin. Sci. Bull. 1999, 44(1):1-6.[王大力. 大气二氧化碳浓度升高对全球甲烷排放的影响[J]. 科学通报, 1999, 44(1): 1-6.]
[6]  Murrell J C, McDonald I R, Bourne D G. Molecular methods for the study of methanotroph ecology [J]. FEMS Microbiology Ecology, 1998, 27(2):103-114.
[7]  Prieme A, Sitaula J, Klemedtsson A. et al. Extraction of methane-oxidizing bacteria from soil particles [J]. FEMS Microbiol. Ecol., 1996, 21: 59-68.
[8]  Thompson A M, Hogan K B, Hoffman J S. Methane reductions - implications for global warming and atmospheric chemical change [J]. Atmos. Environ., 1992, 26(1): 2665-2668.
[9]  Jarrell K F, Kalmokoff M L. Nutritional requirements of the methanogenic archeabacteria [J].Can. J. Microbiol., 1988, 34: 557-576.
[10]  Trevors J T. Why on earth: self-assembly of the bacterial cell to abundant and diverse bacterial species [J]. World J. Microbiol. Biotechnol., 1999, 15: 297-304.
[11]  Schink B. Energetics of syntrophic cooperation in methanogenic degradation [J]. Microbiol. Mol. Biol. Rev., 1997, 61: 262-280.
[12]  Basiliko N, Yavitt J B. Influence of Ni, Co, Fe, and Na additions on methane production in Sphagnum-dominated Northern American peatlands [J]. Biogeochemistry, 2001, 52: 133-153.
[13]  Sarkar G M, Lahiri S C. Methane emission from rice paddy soils, aerotolerance of methanogens and global thermal warming [J]. The Environmentalist, 2000, 20: 343-350.
[14]  Yao H, Conrad R, Wassmann R, et al. Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy [J]. Biogeochemistry, 1999, 47: 269-295.
[15]  Liu Guangxiu, Ma Xiaojun, Chen Tuo, et al. Progress and significance of studies on microorganisms in permafrost sediments[J]. Journal of Glaciology and Geocryology, 2004, 26(2): 188-191.[刘光琇, 马晓军, 陈拓, 等.冻土微生物研究进展与意义[J]. 冰川冻土, 2004, 26(2): 188-191.]
[16]  Boone D R, Whitman W B, Rouvieire P. Diversity and taxonomy of methanogens [A]. Ferry J G. Methanogenesis [M]. New York: Chapman and Hall Co, 1993. 35-80.
[17]  Trotsenko Y A, Khmelenina V N. Biology of extremophilic and extremotolerant methanotrophs [J]. Arch Microbiol., 2002, 177:123-131.
[18]  Whiting G J, Chanton J P. Primary production control of methane emission from wetlands [J]. Nature, 1993, 364: 794-795.
[19]  Topp E. Effects of selected agrochemicals on methane oxidation by an organic agricultural soil [J]. Can. J. Soil Sci., 1993, 73: 287-291.
[20]  Dunfield P F, Knowles R, Dumont R, et al. Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH [J]. Soil Biol. Biochem., 1993, 25: 321-326.
[21]  Aerts R, de Caluwe H. Nitrogen deposition effects on carbon dioxide and methane emissions from temperate peatland soils [J]. Oikos. 1999, 84: 44-54.
[22]  Phillipsa R L, Whalena S C, Schlesinger W H. Response of soil methanotrophic activity to carbon dioxide enrichment in a North Carolina coniferous forest [J]. Soil Biol. Biochem., 2001, 33: 793-800.
[23]  Berestovskaya Y Y, Vasil'eva L V, Chestnykh O V, et al. Methanotrophs of the psychrophilic microbial community of the Russian arctic tundra [J]. Microbiology, 2002, 71(4): 538-544.
[24]  Dubey S K. Spatio-kinetic variation of methane oxidizing bacteria in paddy soil at mid-tillering: effect of N-fertilizers [J]. Nutrient Cycling in Agroecosystems, 2003, 65: 53-59.
[25]  Arif S M A, Houwen F, Verstraete W. Agricultural factors affecting methane oxidation in arable soil [J]. Biol. Fertil. Soils, 1996, 21: 95-102.
[26]  Xu Boqing, Yao Tandong, Chappelaz J. Comparative analysis of high-resolution methane trapped in ice cores between Qinghai-Xizang Plateau and Antarctic since industrial revolution [J]. Journal of Glaciology and Geocryology, 2002, 24(5): 477-483. [徐柏青, 姚檀栋, Chappellaz J. 工业革命以来青藏高原与南极冰芯高分辨率甲烷记录的对比研究[J]. 冰川冻土, 2002, 24(5): 477-483.]
[27]  Jin Huijun, Cheng Guodong. Clathrate methane and global change: a review [J]. Journal of Glaciology and Geocryology, 1997, 19(3): 172-179. [金会军, 程国栋. 水合甲烷与全球变化[J]. 冰川冻土, 1997, 19(3): 172-179.]
[28]  Tiedje J M, Asuming-Brempong S, Nusslein K, et al. Opening the black box of soil microbial diversity [J]. Appl. Soil Ecol., 1999, 13: 109-122.
[29]  Blaut M. Metabolism of methanogens [J]. Anton Leeuwenhoek, 1994, 66: 187-208.
[30]  Reeve J N. Molecular biology of methanogens [J]. Ann. Rev. Microbiol., 1992, 46: 165-191.
[31]  Roy R, Conrad R. Effect of methanogenic precursors (acetate, hydrogen, propionate) on the suppression of methane production by nitrate in anoxic rice field soil [J]. FEMS Microbiology Ecol., 1999, 28: 49-61.
[32]  Czepiel P M, Crill P M, Harriss R C. Environmental factors influencing the variability of methane oxidation in temperate zone soil [J]. J. Geophys. Res., 1995, 100: 9359-9364.
[33]  Achtnich C, Bak F, Conrad R. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil [J]. Biol. Fertil. Soils, 1995, 19: 65-72.
[34]  Liu Guangxiu, Hu Changqin, Zhang Jingbo, et al.Microbial communities in permafrost of the Tibetan Plateau and their significance[J]. Journal of Glaciology and Geocryology, 2001, 23(4): 419-422.[刘光琇, 胡昌勤, 张靖溥, 等.青藏高原多年冻土微生物的分离分析及其意义[J]. 冰川冻土, 2001, 23(4): 419-422.]
[35]  Nozhevnikova A N, Nekrasova V K, Lebedev V S. Low-temperature production and oxidation of methane by the microflora of sludge checks [J]. Mikrobiologia, 1999, 68(2): 267-272.
[36]  Dedysh S N. Methanotrophic bacteria of acidic sphagnum peat bogs [J]. Microbiology, 2002, 71(6): 638-650.
[37]  Mayer H P, Conrad R. Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil [J]. FEMS Microbiol. Ecol., 1990, 73: 103-112.
[38]  Ramakrishnan B, Lueders T, Dunfield P F, et al. Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production [J]. FEMS Microbiology Ecol., 2001, 37: 175-186.
[39]  Watanabe I, Hashimoto T, Shimoyama A. Methane-oxidizing activities and methanotrophic populations associated with wetland rice plants [J]. Biol. Fertil. Soils, 1997, 24: 261-265.
[40]  Joulian C, Ollivier B, Patel B C, et al. Phenotypic and phylogenetic characterization of dominant culturable methanogens isolated from rice field soils [J]. FEMS Microbiol. Ecol., 1998, 25: 135-145.
[41]  Wang B, Xu Y, Zang Z, et al. Methane production potentials of twenty-eight rice soils in China [J]. Biol. Fertil. Soils, 1999, 29: 74-80.
[42]  Min H, Zhao Y H, Chen M C, et al. Methanogens in paddy rice soil [J]. Nutrient Cycling in Agroecosystems, 1997, 49: 163-169.
[43]  Whyte L G, Bourbonniere L, Bellerose C, et al. Bioremediation assessment of hydrocarbon-contaminated soils from the high Arctic [J]. Bioremediation. 1999, 3: 69-79.
[44]  Kruger M, Frenzel P, Conard R. Microbial process influencing methane emission from rice fields [J]. Global Change Biology, 2001, 7: 49-63.
[45]  Nesbit S P, Breitenbeck G A. A laboratory study of factors influencing methane uptake by soils [J]. Agric. Ecosyst. Environ., 1992, 41: 39-54.
[46]  van den Pol-van Dasselaar A, van Beusichem M L, Oenema O. Effects of soil moisture content and temperature on methane uptake by grasslands on sandy soils [J]. Plant Soil, 1998, 204: 213-222.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133