Mer J L, Roger P. Production, oxidation, emission and consumption of methane by soils: A review [J]. Eur. J. Soil Biol., 2001, 37: 25-50.
[2]
Garcia J L, Patel B K C, Ollivier B. Taxonomy, phylogenetic and ecological diversity of methanogenic Archaea [J]. Anaerobe, 2000, 6: 205-226.
[3]
Hanson R S, Hanson T E. Methanotrophic bacteria [J]. Microbiol. Rev., 1996, 60(2): 439-471.
[4]
Segers R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes [J]. Biogeochemistry, 1998, 41: 23-51.
[5]
Wang Dali. The effect of atmospheric CO2 enrichments on global methane emission[J]. Chin. Sci. Bull. 1999, 44(1):1-6.[王大力. 大气二氧化碳浓度升高对全球甲烷排放的影响[J]. 科学通报, 1999, 44(1): 1-6.]
[6]
Murrell J C, McDonald I R, Bourne D G. Molecular methods for the study of methanotroph ecology [J]. FEMS Microbiology Ecology, 1998, 27(2):103-114.
[7]
Prieme A, Sitaula J, Klemedtsson A. et al. Extraction of methane-oxidizing bacteria from soil particles [J]. FEMS Microbiol. Ecol., 1996, 21: 59-68.
[8]
Thompson A M, Hogan K B, Hoffman J S. Methane reductions - implications for global warming and atmospheric chemical change [J]. Atmos. Environ., 1992, 26(1): 2665-2668.
[9]
Jarrell K F, Kalmokoff M L. Nutritional requirements of the methanogenic archeabacteria [J].Can. J. Microbiol., 1988, 34: 557-576.
[10]
Trevors J T. Why on earth: self-assembly of the bacterial cell to abundant and diverse bacterial species [J]. World J. Microbiol. Biotechnol., 1999, 15: 297-304.
[11]
Schink B. Energetics of syntrophic cooperation in methanogenic degradation [J]. Microbiol. Mol. Biol. Rev., 1997, 61: 262-280.
[12]
Basiliko N, Yavitt J B. Influence of Ni, Co, Fe, and Na additions on methane production in Sphagnum-dominated Northern American peatlands [J]. Biogeochemistry, 2001, 52: 133-153.
[13]
Sarkar G M, Lahiri S C. Methane emission from rice paddy soils, aerotolerance of methanogens and global thermal warming [J]. The Environmentalist, 2000, 20: 343-350.
[14]
Yao H, Conrad R, Wassmann R, et al. Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy [J]. Biogeochemistry, 1999, 47: 269-295.
[15]
Liu Guangxiu, Ma Xiaojun, Chen Tuo, et al. Progress and significance of studies on microorganisms in permafrost sediments[J]. Journal of Glaciology and Geocryology, 2004, 26(2): 188-191.[刘光琇, 马晓军, 陈拓, 等.冻土微生物研究进展与意义[J]. 冰川冻土, 2004, 26(2): 188-191.]
[16]
Boone D R, Whitman W B, Rouvieire P. Diversity and taxonomy of methanogens [A]. Ferry J G. Methanogenesis [M]. New York: Chapman and Hall Co, 1993. 35-80.
[17]
Trotsenko Y A, Khmelenina V N. Biology of extremophilic and extremotolerant methanotrophs [J]. Arch Microbiol., 2002, 177:123-131.
[18]
Whiting G J, Chanton J P. Primary production control of methane emission from wetlands [J]. Nature, 1993, 364: 794-795.
[19]
Topp E. Effects of selected agrochemicals on methane oxidation by an organic agricultural soil [J]. Can. J. Soil Sci., 1993, 73: 287-291.
[20]
Dunfield P F, Knowles R, Dumont R, et al. Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH [J]. Soil Biol. Biochem., 1993, 25: 321-326.
[21]
Aerts R, de Caluwe H. Nitrogen deposition effects on carbon dioxide and methane emissions from temperate peatland soils [J]. Oikos. 1999, 84: 44-54.
[22]
Phillipsa R L, Whalena S C, Schlesinger W H. Response of soil methanotrophic activity to carbon dioxide enrichment in a North Carolina coniferous forest [J]. Soil Biol. Biochem., 2001, 33: 793-800.
[23]
Berestovskaya Y Y, Vasil'eva L V, Chestnykh O V, et al. Methanotrophs of the psychrophilic microbial community of the Russian arctic tundra [J]. Microbiology, 2002, 71(4): 538-544.
[24]
Dubey S K. Spatio-kinetic variation of methane oxidizing bacteria in paddy soil at mid-tillering: effect of N-fertilizers [J]. Nutrient Cycling in Agroecosystems, 2003, 65: 53-59.
[25]
Arif S M A, Houwen F, Verstraete W. Agricultural factors affecting methane oxidation in arable soil [J]. Biol. Fertil. Soils, 1996, 21: 95-102.
[26]
Xu Boqing, Yao Tandong, Chappelaz J. Comparative analysis of high-resolution methane trapped in ice cores between Qinghai-Xizang Plateau and Antarctic since industrial revolution [J]. Journal of Glaciology and Geocryology, 2002, 24(5): 477-483. [徐柏青, 姚檀栋, Chappellaz J. 工业革命以来青藏高原与南极冰芯高分辨率甲烷记录的对比研究[J]. 冰川冻土, 2002, 24(5): 477-483.]
[27]
Jin Huijun, Cheng Guodong. Clathrate methane and global change: a review [J]. Journal of Glaciology and Geocryology, 1997, 19(3): 172-179. [金会军, 程国栋. 水合甲烷与全球变化[J]. 冰川冻土, 1997, 19(3): 172-179.]
[28]
Tiedje J M, Asuming-Brempong S, Nusslein K, et al. Opening the black box of soil microbial diversity [J]. Appl. Soil Ecol., 1999, 13: 109-122.
[29]
Blaut M. Metabolism of methanogens [J]. Anton Leeuwenhoek, 1994, 66: 187-208.
[30]
Reeve J N. Molecular biology of methanogens [J]. Ann. Rev. Microbiol., 1992, 46: 165-191.
[31]
Roy R, Conrad R. Effect of methanogenic precursors (acetate, hydrogen, propionate) on the suppression of methane production by nitrate in anoxic rice field soil [J]. FEMS Microbiology Ecol., 1999, 28: 49-61.
[32]
Czepiel P M, Crill P M, Harriss R C. Environmental factors influencing the variability of methane oxidation in temperate zone soil [J]. J. Geophys. Res., 1995, 100: 9359-9364.
[33]
Achtnich C, Bak F, Conrad R. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil [J]. Biol. Fertil. Soils, 1995, 19: 65-72.
[34]
Liu Guangxiu, Hu Changqin, Zhang Jingbo, et al.Microbial communities in permafrost of the Tibetan Plateau and their significance[J]. Journal of Glaciology and Geocryology, 2001, 23(4): 419-422.[刘光琇, 胡昌勤, 张靖溥, 等.青藏高原多年冻土微生物的分离分析及其意义[J]. 冰川冻土, 2001, 23(4): 419-422.]
[35]
Nozhevnikova A N, Nekrasova V K, Lebedev V S. Low-temperature production and oxidation of methane by the microflora of sludge checks [J]. Mikrobiologia, 1999, 68(2): 267-272.
[36]
Dedysh S N. Methanotrophic bacteria of acidic sphagnum peat bogs [J]. Microbiology, 2002, 71(6): 638-650.
[37]
Mayer H P, Conrad R. Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil [J]. FEMS Microbiol. Ecol., 1990, 73: 103-112.
[38]
Ramakrishnan B, Lueders T, Dunfield P F, et al. Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production [J]. FEMS Microbiology Ecol., 2001, 37: 175-186.
[39]
Watanabe I, Hashimoto T, Shimoyama A. Methane-oxidizing activities and methanotrophic populations associated with wetland rice plants [J]. Biol. Fertil. Soils, 1997, 24: 261-265.
[40]
Joulian C, Ollivier B, Patel B C, et al. Phenotypic and phylogenetic characterization of dominant culturable methanogens isolated from rice field soils [J]. FEMS Microbiol. Ecol., 1998, 25: 135-145.
[41]
Wang B, Xu Y, Zang Z, et al. Methane production potentials of twenty-eight rice soils in China [J]. Biol. Fertil. Soils, 1999, 29: 74-80.
[42]
Min H, Zhao Y H, Chen M C, et al. Methanogens in paddy rice soil [J]. Nutrient Cycling in Agroecosystems, 1997, 49: 163-169.
[43]
Whyte L G, Bourbonniere L, Bellerose C, et al. Bioremediation assessment of hydrocarbon-contaminated soils from the high Arctic [J]. Bioremediation. 1999, 3: 69-79.
[44]
Kruger M, Frenzel P, Conard R. Microbial process influencing methane emission from rice fields [J]. Global Change Biology, 2001, 7: 49-63.
[45]
Nesbit S P, Breitenbeck G A. A laboratory study of factors influencing methane uptake by soils [J]. Agric. Ecosyst. Environ., 1992, 41: 39-54.
[46]
van den Pol-van Dasselaar A, van Beusichem M L, Oenema O. Effects of soil moisture content and temperature on methane uptake by grasslands on sandy soils [J]. Plant Soil, 1998, 204: 213-222.