[1] | Banich M. Executive function the search for an integrated account. Curr Dir Psychol Sci. 2009;18: 89–94.
|
[2] | Miyake a, Friedman NP, Emerson MJ, Witzki a H, Howerter a, Wager TD. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41: 49–100. doi: 10.1006/cogp.1999.0734. pmid:10945922
|
[3] | Hunter W. The delayed reaction in animals and children. Behav Monogr. 1913; 1–86. doi: 10.5962/bhl.title.45847
|
[4] | Jacobsen C. Functions of the frontal association area in primates. Neurol Psychiatry. 1935;33: 558–569. doi: 10.1001/archneurpsyc.1935.02250150108009
|
[5] | Cools R, Sheridan M, Jacobs E, D’Esposito M. Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. J Neurosci. 2007;27: 5506–14. doi: 10.1523/JNEUROSCI.0601-07.2007. pmid:17507572
|
[6] | Jha a. P, Fabian S a., Aguirre GK. The role of prefrontal cortex in resolving distractor interference. Cogn Affect Behav Neurosci. 2004;4: 517–527. doi: 10.3758/CABN.4.4.517. pmid:15849894
|
[7] | Toepper M, Gebhardt H, Beblo T, Thomas C, Driessen M, Bischoff M, et al. Functional correlates of distractor suppression during spatial working memory encoding. Neuroscience. Elsevier Inc.; 2010;165: 1244–53. doi: 10.1016/j.neuroscience.2009.11.019.
|
[8] | Konishi S, Nakajima K, Uchida I. Transient activation of inferior prefrontal cortex during cognitive set shifting. Nat Neurosci. 1998;1.
|
[9] | Miller EK. The prefrontal cortex: no simple matter. Neuroimage. 2000;11: 447–50. doi: 10.1006/nimg.2000.0574. pmid:10806030
|
[10] | Hedden T, Gabrieli JDE. Shared and selective neural correlates of inhibition, facilitation, and shifting processes during executive control. Neuroimage. Elsevier Inc.; 2010;51: 421–31. doi: 10.1016/j.neuroimage.2010.01.089.
|
[11] | Wager TD, Jonides J, Reading S. Neuroimaging studies of shifting attention: a meta-analysis. Neuroimage. 2004;22: 1679–93. doi: 10.1016/j.neuroimage.2004.03.052. pmid:15275924
|
[12] | Armbruster DJN, Ueltzh?ffer K, Basten U, Fiebach CJ. Prefrontal cortical mechanisms underlying individual differences in cognitive flexibility and stability. J Cogn Neurosci. 2012;24: 2385–99. doi: 10.1162/jocn_a_00286. pmid:22905818
|
[13] | Jersild AT. Mental set and shift. Arch Psychol. 1927;14: 81.
|
[14] | Monsell S. Task switching. Trends Cogn Sci. 2003;7: 134–140. doi: 10.1016/S1364-6613(03)00028-7. pmid:12639695
|
[15] | Stelzel C, Basten U, Montag C, Reuter M, Fiebach CJ. Frontostriatal involvement in task switching depends on genetic differences in d2 receptor density. J Neurosci. 2010;30: 14205–12. doi: 10.1523/JNEUROSCI.1062-10.2010. pmid:20962241
|
[16] | Dreisbach G, Müller J, Goschke T, Strobel A, Schulze K, Lesch K-P, et al. Dopamine and cognitive control: the influence of spontaneous eyeblink rate and dopamine gene polymorphisms on perseveration and distractibility. Behav Neurosci. 2005;119: 483–90. doi: 10.1037/0735-7044.119.2.483. pmid:15839794
|
[17] | Cools R, D’Esposito M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry. Elsevier Inc.; 2011;69: e113–e125. doi: 10.1016/j.biopsych.2011.03.028.
|
[18] | Durstewitz D, Seamans JK. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol Psychiatry. 2008;64: 739–49. doi: 10.1016/j.biopsych.2008.05.015. pmid:18620336
|
[19] | Rolls ET, Loh M, Deco G, Winterer G. Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci. 2008;9: 696–709. doi: 10.1038/nrn2462. pmid:18714326
|
[20] | Wills TJ, Lever C, Cacucci F, Burgess N, O’Keefe J. Attractor dynamics in the hippocampal representation of the local environment. Science. 2005;308: 873–6. doi: 10.1126/science.1108905. pmid:15879220
|
[21] | Balaguer-Ballester E, Lapish CC, Seamans JK, Durstewitz D. Attracting dynamics of frontal cortex ensembles during memory-guided decision-making. PLoS Comput Biol. 2011;7: e1002057. doi: 10.1371/journal.pcbi.1002057. pmid:21625577
|
[22] | Brunel N, Wang XJ. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci. 2001;11: 63–85.
|
[23] | Wang X-J. Probabilistic decision making by slow reverrberation in cortical circuits. Neuron. 2002;36: 955–968.
|
[24] | Deco G, Rolls ET. Decision-making and Weber’s law: a neurophysiological model. Eur J Neurosci. 2006;24: 901–16. doi: 10.1111/j.1460-9568.2006.04940.x. pmid:16930418
|
[25] | Wong K-F, Wang X-J. A recurrent network mechanism of time integration in perceptual decisions. J Neurosci. 2006;26: 1314–28. doi: 10.1523/JNEUROSCI.3733-05.2006. pmid:16436619
|
[26] | Roxin A, Ledberg A. Neurobiological models of two-choice decision making can be reduced to a one-dimensional nonlinear diffusion equation. PLoS Comput Biol. 2008;4: e1000046. doi: 10.1371/journal.pcbi.1000046. pmid:18369436
|
[27] | Derrfuss J, Brass M, Neumann J, von Cramon DY. Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp. 2005;25: 22–34. doi: 10.1002/hbm.20127. pmid:15846824
|
[28] | Kim C, Cilles SE, Johnson NF, Gold BT. Domain general and domain preferential brain regions associated with different types of task switching: a meta-analysis. Hum Brain Mapp. 2012;33: 130–42. doi: 10.1002/hbm.21199. pmid:21391260
|
[29] | Muhle-Karbe PS, De Baene W, Brass M. Do tasks matter in task switching? Dissociating domain-general from context-specific brain activity. Neuroimage. Elsevier Inc.; 2014;99C: 332–341. doi: 10.1016/j.neuroimage.2014.05.058.
|
[30] | D’Ardenne K, Eshel N, Luka J, Lenartowicz A, Nystrom LE, Cohen JD. Role of prefrontal cortex and the midbrain dopamine system in working memory updating. Proc Natl Acad Sci U S A. 2012;109: 19900–9. doi: 10.1073/pnas.1116727109. pmid:23086162
|
[31] | Van Schouwenburg MR, den Ouden HEM, Cools R. The human basal ganglia modulate frontal-posterior connectivity during attention shifting. J Neurosci. 2010;30: 9910–8. doi: 10.1523/JNEUROSCI.1111-10.2010. pmid:20660273
|
[32] | Tekin S, Cummings JL. Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res. 2002;53: 647–54.
|
[33] | Samanez-Larkin GR, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS, et al. A thalamocorticostriatal dopamine network for psychostimulant-enhanced human cognitive flexibility. Biol Psychiatry. Elsevier; 2013;74: 99–105. doi: 10.1016/j.biopsych.2012.10.032. pmid:23273721
|
[34] | Stemme A, Deco G, Busch A, Schneider WX. Neurons and the synaptic basis of the fMRI signal associated with cognitive flexibility. Neuroimage. 2005;26: 454–70. doi: 10.1016/j.neuroimage.2005.01.044. pmid:15907303
|
[35] | Abeles M. Corticonics. New York: Cambridge University Press; 1991.
|
[36] | Braitenberg V, Schütz A. Anatomy of the Cortex. Berlin: Springer Verlag; 1991.
|
[37] | Douglas RJ, Martin K a C. Recurrent neuronal circuits in the neocortex. Curr Biol. 2007;17: R496–500. doi: 10.1016/j.cub.2007.04.024. pmid:17610826
|
[38] | Bastos AM, Usrey WM, Adams R a, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for predictive coding. Neuron. Elsevier Inc.; 2012;76: 695–711. doi: 10.1016/j.neuron.2012.10.038.
|
[39] | Theodoni P, Panagiotaropoulos TI, Kapoor V, Logothetis NK, Deco G. Cortical microcircuit dynamics mediating binocular rivalry: the role of adaptation in inhibition. Front Hum Neurosci. 2011;5: 145. doi: 10.3389/fnhum.2011.00145. pmid:22164140
|
[40] | Albantakis L, Deco G. The encoding of alternatives in multiple-choice decision making. Proc Natl Acad Sci U S A. 2009;106: 10308–13. doi: 10.1073/pnas.0901621106. pmid:19497888
|
[41] | Rolls ET, Grabenhorst F, Deco G. Choice, difficulty, and confidence in the brain. J Neurophysiol. 2010;104: 2359–74. doi: 10.1016/j.neuroimage.2010.06.073. pmid:20810685
|
[42] | Moreno-Bote R, Knill DC, Pouget A. Bayesian sampling in visual perception. Proc Natl Acad Sci U S A. 2011;108: 12491–6. doi: 10.1073/pnas.1101430108. pmid:21742982
|
[43] | Ratcliff R, Smith P. A Comparison of Sequential Sampling Models for Two-Choice Reaction Time. Psychol Rev. 2004;111: 333–367.
|
[44] | Wang X-J. Neural dynamics and circuit mechanisms of decision-making. Curr Opin Neurobiol. Elsevier Ltd; 2012;22: 1039–46. doi: 10.1016/j.conb.2012.08.006.
|
[45] | Nickolls J, Buck IAN, Garland M, Skadron K. Scalable Parallel Programming with CUDA. ACM Queue. 2008;6: 40–53. doi: 10.1145/1365490.1365500
|
[46] | Wang J, Zhang K, Xu L, Wang E. Quantifying the Waddington landscape and biological paths for development and differentiation. Proc Natl Acad Sci U S A. 2011;108: 8257–62. doi: 10.1073/pnas.1017017108. pmid:21536909
|
[47] | Wang J, Xu L, Wang E. Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations. Proc Natl Acad Sci U S A. 2008;105: 12271–6. doi: 10.1073/pnas.0800579105. pmid:18719111
|
[48] | Ward BD. Simultaneous inference for fMRI data [Internet]. 2000.
|
[49] | Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9: 357–381. doi: 10.1146/annurev.neuro.9.1.357. pmid:3085570
|
[50] | Leh SE, Petrides M, Strafella AP. The neural circuitry of executive functions in healthy subjects and Parkinson’s disease. Neuropsychopharmacology. Nature Publishing Group; 2010;35: 70–85. doi: 10.1038/npp.2009.88.
|
[51] | Gruber AJ, Dayan P, Gutkin BS, Solla S a. Dopamine modulation in the basal ganglia locks the gate to working memory. J Comput Neurosci. 2006;20: 153–66. doi: 10.1007/s10827-005-5705-x. pmid:16699839
|
[52] | Stelzel C, Fiebach CJ, Cools R, Tafazoli S, Esposito MD, D’Esposito M. Dissociable fronto-striatal effects of dopamine D2 receptor stimulation on cognitive versus motor flexibility. Cortex. Elsevier Ltd; 2013;49: 2799–2811. doi: 10.1016/j.cortex.2013.04.002. pmid:23660437
|
[53] | Maldjian J a., Laurienti PJ, Kraft R a., Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19: 1233–1239. doi: 10.1016/S1053-8119(03)00169-1. pmid:12880848
|
[54] | Friston KJ, Rotshtein P, Geng JJ, Sterzer P, Henson RN. A critique of functional localisers. Neuroimage. 2006;30: 1077–87. doi: 10.1016/j.neuroimage.2005.08.012. pmid:16635579
|
[55] | Ratcliff R, McKoon G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 2008;20: 1–44.
|
[56] | Smith PL, Ratcliff R. Psychology and neurobiology of simple decisions. Trends Neurosci. 2004;27: 161–8. doi: 10.1016/j.tins.2004.01.006. pmid:15036882
|
[57] | Goldman-Rakic P. Cellular basis of working memory. Neuron. 1995;14: 477–485.
|
[58] | Hopfield J. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad …. 1982;79: 2554–2558.
|
[59] | Deco G, Rolls ET, Albantakis L, Romo R. Brain mechanisms for perceptual and reward-related decision-making. Prog Neurobiol. Elsevier Ltd; 2013;103: 194–213. doi: 10.1016/j.pneurobio.2012.01.010. pmid:22326926
|
[60] | Wang X-J. Decision making in recurrent neuronal circuits. Neuron. Elsevier Inc.; 2008;60: 215–34. doi: 10.1016/j.neuron.2008.09.034.
|
[61] | Rabinovich MI, Huerta R, Laurent G. Transient Dynamics for Neural Processing. Science (80-). 2008;321: 48–50. doi: 10.1126/science.1155564
|
[62] | Rabinovich MI, Varona P. Robust transient dynamics and brain functions. Front Comput Neurosci. 2011;5: 24. doi: 10.3389/fncom.2011.00024. pmid:21716642
|
[63] | Bystritsky A, Nierenberg AA, Feusner JD, Rabinovich M. Computational non-linear dynamical psychiatry: a new methodological paradigm for diagnosis and course of illness. J Psychiatr Res. Elsevier Ltd; 2012;46: 428–35. doi: 10.1016/j.jpsychires.2011.10.013. pmid:22261550
|
[64] | Rolls ET. Glutamate, obsessive-compulsive disorder, schizophrenia, and the stability of cortical attractor neuronal networks [Internet]. Pharmacology Biochemistry and Behavior. Elsevier Inc.; 2012. pp. 736–751. doi: 10.1016/j.pbb.2011.06.017.
|
[65] | Rolls ET. Attractor networks. Wiley Interdiscip Rev Cogn Sci. 2010;1: 119–134. doi: 10.1002/wcs.1.
|
[66] | Cools R. Dopaminergic control of the striatum for high-level cognition. Curr Opin Neurobiol. Elsevier Ltd; 2011;21: 402–407. doi: 10.1016/j.conb.2011.04.002.
|
[67] | Ardid S, Wang X-J. A Tweaking Principle for Executive Control: Neuronal Circuit Mechanism for Rule-Based Task Switching and Conflict Resolution. J Neurosci. 2013;33: 19504–19517. doi: 10.1523/JNEUROSCI.1356-13.2013. pmid:24336717
|
[68] | Postle BR. Working memory as an emergent property of the mind and brain. Neuroscience. 2006;139: 23–38. doi: 10.1016/j.neuroscience.2005.06.005. pmid:16324795
|
[69] | D’Esposito M. From cognitive to neural models of working memory. Philos Trans R Soc Lond B Biol Sci. 2007;362: 761–72. doi: 10.1098/rstb.2007.2086. pmid:17400538
|
[70] | Berryhill ME. Insights from neuropsychology: pinpointing the role of the posterior parietal cortex in episodic and working memory. Front Integr Neurosci. 2012;6: 31. doi: 10.3389/fnint.2012.00031. pmid:22701406
|
[71] | Yamazaki Y, Hashimoto T, Iriki A. The posterior parietal cortex and non-spatial cognition. F1000 Biol Rep. 2009;1: 74. doi: 10.3410/B1-74. pmid:20948614
|
[72] | Christophel TB, Hebart MN, Haynes J-D. Decoding the contents of visual short-term memory from human visual and parietal cortex. J Neurosci. 2012;32: 12983–9. doi: 10.1523/JNEUROSCI.0184-12.2012. pmid:22993415
|
[73] | Harrison S a, Tong F. Decoding reveals the contents of visual working memory in early visual areas. Nature. 2009;458: 632–5. doi: 10.1038/nature07832. pmid:19225460
|
[74] | Bledowski C, Kaiser J, Rahm B. Basic operations in working memory: contributions from functional imaging studies. Behav Brain Res. Elsevier B.V.; 2010;214: 172–9. doi: 10.1016/j.bbr.2010.05.041. pmid:20678984
|
[75] | Muhle-Karbe PS, Andres M, Brass M. Transcranial Magnetic Stimulation Dissociates Prefrontal and Parietal Contributions to Task Preparation. J Neurosci. 2014;34: 12481–12489. doi: 10.1523/JNEUROSCI.4931-13.2014. pmid:25209286
|
[76] | Durstewitz D, Seamans JK, Sejnowski TJ. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol. 2000;83: 1733–50.
|
[77] | Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol. 2004;74: 1–58. doi: 10.1016/j.pneurobio.2004.05.006. pmid:15381316
|
[78] | Trantham-Davidson H, Neely LC, Lavin A, Seamans JK. Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex. J Neurosci. 2004;24: 10652–10659. doi: 10.1523/JNEUROSCI.3179-04.2004. pmid:15564581
|
[79] | Richter SH, Vogel AS, Ueltzh?ffer K, Muzzillo C, Vogt M a, Lankisch K, et al. Touchscreen-paradigm for mice reveals cross-species evidence for an antagonistic relationship of cognitive flexibility and stability. Front Behav Neurosci. 2014;8: 154. doi: 10.3389/fnbeh.2014.00154. pmid:24834036
|
[80] | Feynman RP, Hibbs AR. Quantum Mechanics and Path Integrals. Hibbs, A R. New York: McGraw-Hill; 1965.
|
[81] | Cools R, Robbins TW. Chemistry of the adaptive mind. Philos Trans A Math Phys Eng Sci. 2004;362: 2871–88. doi: 10.1098/rsta.2004.1468. pmid:15539374
|
[82] | Stemme A, Deco G, Busch A. The neuronal dynamics underlying cognitive flexibility in set shifting tasks. J Comput Neurosci. 2007;23: 313–31. doi: 10.1007/s10827-007-0034-x. pmid:17510782
|
[83] | Machens CK, Romo R, Brody CD. Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science (80-). 2005;307: 1121–4. doi: 10.1126/science.1104171. pmid:15718474
|
[84] | Shadlen MN, Newsome WT. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol. 2001;86: 1916–36.
|
[85] | Fuster J, Alexander G. Neuron activity related to short-term memory. Science (80-). 1971; 652–654.
|
[86] | Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of State Calculations by Fast Computing Machines. J Chem Phys. 1953;21: 1087. doi: 10.1063/1.1699114.
|
[87] | Hastings WK. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika. 1970;57: 97–109. doi: 10.1093/biomet/57.1.97
|
[88] | Shimazaki H, Shinomoto S. Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci. 2010;29: 171–82. doi: 10.1007/s10827-009-0180-4. pmid:19655238
|
[89] | Van Essen D, Drury H, Dickson J, Harwell J, Hanlon D, Anderson C. An integrated software suite for surface-based analyses of cerebral cortex. J Am Med Informatics Assoc. 2001;8: 443–459.
|
[90] | Friston KJ, Fletcher P, Josephs O, Holmes a, Rugg MD, Turner R. Event-related fMRI: characterizing differential responses. Neuroimage. 1998;7: 30–40. doi: 10.1006/nimg.1997.0306. pmid:9500830
|
[91] | Pollmann S, Dove a, Yves von Cramon D, Wiggins CJ. Event-related fMRI: comparison of conditions with varying BOLD overlap. Hum Brain Mapp. 2000;9: 26–37.
|