All Title Author
Keywords Abstract

Stochastic Dynamics Underlying Cognitive Stability and Flexibility

DOI: 10.1371/journal.pcbi.1004331

Full-Text   Cite this paper   Add to My Lib


Cognitive stability and flexibility are core functions in the successful pursuit of behavioral goals. While there is evidence for a common frontoparietal network underlying both functions and for a key role of dopamine in the modulation of flexible versus stable behavior, the exact neurocomputational mechanisms underlying those executive functions and their adaptation to environmental demands are still unclear. In this work we study the neurocomputational mechanisms underlying cue based task switching (flexibility) and distractor inhibition (stability) in a paradigm specifically designed to probe both functions. We develop a physiologically plausible, explicit model of neural networks that maintain the currently active task rule in working memory and implement the decision process. We simplify the four-choice decision network to a nonlinear drift-diffusion process that we canonically derive from a generic winner-take-all network model. By fitting our model to the behavioral data of individual subjects, we can reproduce their full behavior in terms of decisions and reaction time distributions in baseline as well as distractor inhibition and switch conditions. Furthermore, we predict the individual hemodynamic response timecourse of the rule-representing network and localize it to a frontoparietal network including the inferior frontal junction area and the intraparietal sulcus, using functional magnetic resonance imaging. This refines the understanding of task-switch-related frontoparietal brain activity as reflecting attractor-like working memory representations of task rules. Finally, we estimate the subject-specific stability of the rule-representing attractor states in terms of the minimal action associated with a transition between different rule states in the phase-space of the fitted models. This stability measure correlates with switching-specific thalamocorticostriatal activation, i.e., with a system associated with flexible working memory updating and dopaminergic modulation of cognitive flexibility. These results show that stochastic dynamical systems can implement the basic computations underlying cognitive stability and flexibility and explain neurobiological bases of individual differences.


[1]  Banich M. Executive function the search for an integrated account. Curr Dir Psychol Sci. 2009;18: 89–94.
[2]  Miyake a, Friedman NP, Emerson MJ, Witzki a H, Howerter a, Wager TD. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41: 49–100. doi: 10.1006/cogp.1999.0734. pmid:10945922
[3]  Hunter W. The delayed reaction in animals and children. Behav Monogr. 1913; 1–86. doi: 10.5962/bhl.title.45847
[4]  Jacobsen C. Functions of the frontal association area in primates. Neurol Psychiatry. 1935;33: 558–569. doi: 10.1001/archneurpsyc.1935.02250150108009
[5]  Cools R, Sheridan M, Jacobs E, D’Esposito M. Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. J Neurosci. 2007;27: 5506–14. doi: 10.1523/JNEUROSCI.0601-07.2007. pmid:17507572
[6]  Jha a. P, Fabian S a., Aguirre GK. The role of prefrontal cortex in resolving distractor interference. Cogn Affect Behav Neurosci. 2004;4: 517–527. doi: 10.3758/CABN.4.4.517. pmid:15849894
[7]  Toepper M, Gebhardt H, Beblo T, Thomas C, Driessen M, Bischoff M, et al. Functional correlates of distractor suppression during spatial working memory encoding. Neuroscience. Elsevier Inc.; 2010;165: 1244–53. doi: 10.1016/j.neuroscience.2009.11.019.
[8]  Konishi S, Nakajima K, Uchida I. Transient activation of inferior prefrontal cortex during cognitive set shifting. Nat Neurosci. 1998;1.
[9]  Miller EK. The prefrontal cortex: no simple matter. Neuroimage. 2000;11: 447–50. doi: 10.1006/nimg.2000.0574. pmid:10806030
[10]  Hedden T, Gabrieli JDE. Shared and selective neural correlates of inhibition, facilitation, and shifting processes during executive control. Neuroimage. Elsevier Inc.; 2010;51: 421–31. doi: 10.1016/j.neuroimage.2010.01.089.
[11]  Wager TD, Jonides J, Reading S. Neuroimaging studies of shifting attention: a meta-analysis. Neuroimage. 2004;22: 1679–93. doi: 10.1016/j.neuroimage.2004.03.052. pmid:15275924
[12]  Armbruster DJN, Ueltzh?ffer K, Basten U, Fiebach CJ. Prefrontal cortical mechanisms underlying individual differences in cognitive flexibility and stability. J Cogn Neurosci. 2012;24: 2385–99. doi: 10.1162/jocn_a_00286. pmid:22905818
[13]  Jersild AT. Mental set and shift. Arch Psychol. 1927;14: 81.
[14]  Monsell S. Task switching. Trends Cogn Sci. 2003;7: 134–140. doi: 10.1016/S1364-6613(03)00028-7. pmid:12639695
[15]  Stelzel C, Basten U, Montag C, Reuter M, Fiebach CJ. Frontostriatal involvement in task switching depends on genetic differences in d2 receptor density. J Neurosci. 2010;30: 14205–12. doi: 10.1523/JNEUROSCI.1062-10.2010. pmid:20962241
[16]  Dreisbach G, Müller J, Goschke T, Strobel A, Schulze K, Lesch K-P, et al. Dopamine and cognitive control: the influence of spontaneous eyeblink rate and dopamine gene polymorphisms on perseveration and distractibility. Behav Neurosci. 2005;119: 483–90. doi: 10.1037/0735-7044.119.2.483. pmid:15839794
[17]  Cools R, D’Esposito M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry. Elsevier Inc.; 2011;69: e113–e125. doi: 10.1016/j.biopsych.2011.03.028.
[18]  Durstewitz D, Seamans JK. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol Psychiatry. 2008;64: 739–49. doi: 10.1016/j.biopsych.2008.05.015. pmid:18620336
[19]  Rolls ET, Loh M, Deco G, Winterer G. Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci. 2008;9: 696–709. doi: 10.1038/nrn2462. pmid:18714326
[20]  Wills TJ, Lever C, Cacucci F, Burgess N, O’Keefe J. Attractor dynamics in the hippocampal representation of the local environment. Science. 2005;308: 873–6. doi: 10.1126/science.1108905. pmid:15879220
[21]  Balaguer-Ballester E, Lapish CC, Seamans JK, Durstewitz D. Attracting dynamics of frontal cortex ensembles during memory-guided decision-making. PLoS Comput Biol. 2011;7: e1002057. doi: 10.1371/journal.pcbi.1002057. pmid:21625577
[22]  Brunel N, Wang XJ. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci. 2001;11: 63–85.
[23]  Wang X-J. Probabilistic decision making by slow reverrberation in cortical circuits. Neuron. 2002;36: 955–968.
[24]  Deco G, Rolls ET. Decision-making and Weber’s law: a neurophysiological model. Eur J Neurosci. 2006;24: 901–16. doi: 10.1111/j.1460-9568.2006.04940.x. pmid:16930418
[25]  Wong K-F, Wang X-J. A recurrent network mechanism of time integration in perceptual decisions. J Neurosci. 2006;26: 1314–28. doi: 10.1523/JNEUROSCI.3733-05.2006. pmid:16436619
[26]  Roxin A, Ledberg A. Neurobiological models of two-choice decision making can be reduced to a one-dimensional nonlinear diffusion equation. PLoS Comput Biol. 2008;4: e1000046. doi: 10.1371/journal.pcbi.1000046. pmid:18369436
[27]  Derrfuss J, Brass M, Neumann J, von Cramon DY. Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp. 2005;25: 22–34. doi: 10.1002/hbm.20127. pmid:15846824
[28]  Kim C, Cilles SE, Johnson NF, Gold BT. Domain general and domain preferential brain regions associated with different types of task switching: a meta-analysis. Hum Brain Mapp. 2012;33: 130–42. doi: 10.1002/hbm.21199. pmid:21391260
[29]  Muhle-Karbe PS, De Baene W, Brass M. Do tasks matter in task switching? Dissociating domain-general from context-specific brain activity. Neuroimage. Elsevier Inc.; 2014;99C: 332–341. doi: 10.1016/j.neuroimage.2014.05.058.
[30]  D’Ardenne K, Eshel N, Luka J, Lenartowicz A, Nystrom LE, Cohen JD. Role of prefrontal cortex and the midbrain dopamine system in working memory updating. Proc Natl Acad Sci U S A. 2012;109: 19900–9. doi: 10.1073/pnas.1116727109. pmid:23086162
[31]  Van Schouwenburg MR, den Ouden HEM, Cools R. The human basal ganglia modulate frontal-posterior connectivity during attention shifting. J Neurosci. 2010;30: 9910–8. doi: 10.1523/JNEUROSCI.1111-10.2010. pmid:20660273
[32]  Tekin S, Cummings JL. Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res. 2002;53: 647–54.
[33]  Samanez-Larkin GR, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS, et al. A thalamocorticostriatal dopamine network for psychostimulant-enhanced human cognitive flexibility. Biol Psychiatry. Elsevier; 2013;74: 99–105. doi: 10.1016/j.biopsych.2012.10.032. pmid:23273721
[34]  Stemme A, Deco G, Busch A, Schneider WX. Neurons and the synaptic basis of the fMRI signal associated with cognitive flexibility. Neuroimage. 2005;26: 454–70. doi: 10.1016/j.neuroimage.2005.01.044. pmid:15907303
[35]  Abeles M. Corticonics. New York: Cambridge University Press; 1991.
[36]  Braitenberg V, Schütz A. Anatomy of the Cortex. Berlin: Springer Verlag; 1991.
[37]  Douglas RJ, Martin K a C. Recurrent neuronal circuits in the neocortex. Curr Biol. 2007;17: R496–500. doi: 10.1016/j.cub.2007.04.024. pmid:17610826
[38]  Bastos AM, Usrey WM, Adams R a, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for predictive coding. Neuron. Elsevier Inc.; 2012;76: 695–711. doi: 10.1016/j.neuron.2012.10.038.
[39]  Theodoni P, Panagiotaropoulos TI, Kapoor V, Logothetis NK, Deco G. Cortical microcircuit dynamics mediating binocular rivalry: the role of adaptation in inhibition. Front Hum Neurosci. 2011;5: 145. doi: 10.3389/fnhum.2011.00145. pmid:22164140
[40]  Albantakis L, Deco G. The encoding of alternatives in multiple-choice decision making. Proc Natl Acad Sci U S A. 2009;106: 10308–13. doi: 10.1073/pnas.0901621106. pmid:19497888
[41]  Rolls ET, Grabenhorst F, Deco G. Choice, difficulty, and confidence in the brain. J Neurophysiol. 2010;104: 2359–74. doi: 10.1016/j.neuroimage.2010.06.073. pmid:20810685
[42]  Moreno-Bote R, Knill DC, Pouget A. Bayesian sampling in visual perception. Proc Natl Acad Sci U S A. 2011;108: 12491–6. doi: 10.1073/pnas.1101430108. pmid:21742982
[43]  Ratcliff R, Smith P. A Comparison of Sequential Sampling Models for Two-Choice Reaction Time. Psychol Rev. 2004;111: 333–367.
[44]  Wang X-J. Neural dynamics and circuit mechanisms of decision-making. Curr Opin Neurobiol. Elsevier Ltd; 2012;22: 1039–46. doi: 10.1016/j.conb.2012.08.006.
[45]  Nickolls J, Buck IAN, Garland M, Skadron K. Scalable Parallel Programming with CUDA. ACM Queue. 2008;6: 40–53. doi: 10.1145/1365490.1365500
[46]  Wang J, Zhang K, Xu L, Wang E. Quantifying the Waddington landscape and biological paths for development and differentiation. Proc Natl Acad Sci U S A. 2011;108: 8257–62. doi: 10.1073/pnas.1017017108. pmid:21536909
[47]  Wang J, Xu L, Wang E. Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations. Proc Natl Acad Sci U S A. 2008;105: 12271–6. doi: 10.1073/pnas.0800579105. pmid:18719111
[48]  Ward BD. Simultaneous inference for fMRI data [Internet]. 2000.
[49]  Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9: 357–381. doi: 10.1146/annurev.neuro.9.1.357. pmid:3085570
[50]  Leh SE, Petrides M, Strafella AP. The neural circuitry of executive functions in healthy subjects and Parkinson’s disease. Neuropsychopharmacology. Nature Publishing Group; 2010;35: 70–85. doi: 10.1038/npp.2009.88.
[51]  Gruber AJ, Dayan P, Gutkin BS, Solla S a. Dopamine modulation in the basal ganglia locks the gate to working memory. J Comput Neurosci. 2006;20: 153–66. doi: 10.1007/s10827-005-5705-x. pmid:16699839
[52]  Stelzel C, Fiebach CJ, Cools R, Tafazoli S, Esposito MD, D’Esposito M. Dissociable fronto-striatal effects of dopamine D2 receptor stimulation on cognitive versus motor flexibility. Cortex. Elsevier Ltd; 2013;49: 2799–2811. doi: 10.1016/j.cortex.2013.04.002. pmid:23660437
[53]  Maldjian J a., Laurienti PJ, Kraft R a., Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19: 1233–1239. doi: 10.1016/S1053-8119(03)00169-1. pmid:12880848
[54]  Friston KJ, Rotshtein P, Geng JJ, Sterzer P, Henson RN. A critique of functional localisers. Neuroimage. 2006;30: 1077–87. doi: 10.1016/j.neuroimage.2005.08.012. pmid:16635579
[55]  Ratcliff R, McKoon G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 2008;20: 1–44.
[56]  Smith PL, Ratcliff R. Psychology and neurobiology of simple decisions. Trends Neurosci. 2004;27: 161–8. doi: 10.1016/j.tins.2004.01.006. pmid:15036882
[57]  Goldman-Rakic P. Cellular basis of working memory. Neuron. 1995;14: 477–485.
[58]  Hopfield J. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad …. 1982;79: 2554–2558.
[59]  Deco G, Rolls ET, Albantakis L, Romo R. Brain mechanisms for perceptual and reward-related decision-making. Prog Neurobiol. Elsevier Ltd; 2013;103: 194–213. doi: 10.1016/j.pneurobio.2012.01.010. pmid:22326926
[60]  Wang X-J. Decision making in recurrent neuronal circuits. Neuron. Elsevier Inc.; 2008;60: 215–34. doi: 10.1016/j.neuron.2008.09.034.
[61]  Rabinovich MI, Huerta R, Laurent G. Transient Dynamics for Neural Processing. Science (80-). 2008;321: 48–50. doi: 10.1126/science.1155564
[62]  Rabinovich MI, Varona P. Robust transient dynamics and brain functions. Front Comput Neurosci. 2011;5: 24. doi: 10.3389/fncom.2011.00024. pmid:21716642
[63]  Bystritsky A, Nierenberg AA, Feusner JD, Rabinovich M. Computational non-linear dynamical psychiatry: a new methodological paradigm for diagnosis and course of illness. J Psychiatr Res. Elsevier Ltd; 2012;46: 428–35. doi: 10.1016/j.jpsychires.2011.10.013. pmid:22261550
[64]  Rolls ET. Glutamate, obsessive-compulsive disorder, schizophrenia, and the stability of cortical attractor neuronal networks [Internet]. Pharmacology Biochemistry and Behavior. Elsevier Inc.; 2012. pp. 736–751. doi: 10.1016/j.pbb.2011.06.017.
[65]  Rolls ET. Attractor networks. Wiley Interdiscip Rev Cogn Sci. 2010;1: 119–134. doi: 10.1002/wcs.1.
[66]  Cools R. Dopaminergic control of the striatum for high-level cognition. Curr Opin Neurobiol. Elsevier Ltd; 2011;21: 402–407. doi: 10.1016/j.conb.2011.04.002.
[67]  Ardid S, Wang X-J. A Tweaking Principle for Executive Control: Neuronal Circuit Mechanism for Rule-Based Task Switching and Conflict Resolution. J Neurosci. 2013;33: 19504–19517. doi: 10.1523/JNEUROSCI.1356-13.2013. pmid:24336717
[68]  Postle BR. Working memory as an emergent property of the mind and brain. Neuroscience. 2006;139: 23–38. doi: 10.1016/j.neuroscience.2005.06.005. pmid:16324795
[69]  D’Esposito M. From cognitive to neural models of working memory. Philos Trans R Soc Lond B Biol Sci. 2007;362: 761–72. doi: 10.1098/rstb.2007.2086. pmid:17400538
[70]  Berryhill ME. Insights from neuropsychology: pinpointing the role of the posterior parietal cortex in episodic and working memory. Front Integr Neurosci. 2012;6: 31. doi: 10.3389/fnint.2012.00031. pmid:22701406
[71]  Yamazaki Y, Hashimoto T, Iriki A. The posterior parietal cortex and non-spatial cognition. F1000 Biol Rep. 2009;1: 74. doi: 10.3410/B1-74. pmid:20948614
[72]  Christophel TB, Hebart MN, Haynes J-D. Decoding the contents of visual short-term memory from human visual and parietal cortex. J Neurosci. 2012;32: 12983–9. doi: 10.1523/JNEUROSCI.0184-12.2012. pmid:22993415
[73]  Harrison S a, Tong F. Decoding reveals the contents of visual working memory in early visual areas. Nature. 2009;458: 632–5. doi: 10.1038/nature07832. pmid:19225460
[74]  Bledowski C, Kaiser J, Rahm B. Basic operations in working memory: contributions from functional imaging studies. Behav Brain Res. Elsevier B.V.; 2010;214: 172–9. doi: 10.1016/j.bbr.2010.05.041. pmid:20678984
[75]  Muhle-Karbe PS, Andres M, Brass M. Transcranial Magnetic Stimulation Dissociates Prefrontal and Parietal Contributions to Task Preparation. J Neurosci. 2014;34: 12481–12489. doi: 10.1523/JNEUROSCI.4931-13.2014. pmid:25209286
[76]  Durstewitz D, Seamans JK, Sejnowski TJ. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol. 2000;83: 1733–50.
[77]  Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol. 2004;74: 1–58. doi: 10.1016/j.pneurobio.2004.05.006. pmid:15381316
[78]  Trantham-Davidson H, Neely LC, Lavin A, Seamans JK. Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex. J Neurosci. 2004;24: 10652–10659. doi: 10.1523/JNEUROSCI.3179-04.2004. pmid:15564581
[79]  Richter SH, Vogel AS, Ueltzh?ffer K, Muzzillo C, Vogt M a, Lankisch K, et al. Touchscreen-paradigm for mice reveals cross-species evidence for an antagonistic relationship of cognitive flexibility and stability. Front Behav Neurosci. 2014;8: 154. doi: 10.3389/fnbeh.2014.00154. pmid:24834036
[80]  Feynman RP, Hibbs AR. Quantum Mechanics and Path Integrals. Hibbs, A R. New York: McGraw-Hill; 1965.
[81]  Cools R, Robbins TW. Chemistry of the adaptive mind. Philos Trans A Math Phys Eng Sci. 2004;362: 2871–88. doi: 10.1098/rsta.2004.1468. pmid:15539374
[82]  Stemme A, Deco G, Busch A. The neuronal dynamics underlying cognitive flexibility in set shifting tasks. J Comput Neurosci. 2007;23: 313–31. doi: 10.1007/s10827-007-0034-x. pmid:17510782
[83]  Machens CK, Romo R, Brody CD. Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science (80-). 2005;307: 1121–4. doi: 10.1126/science.1104171. pmid:15718474
[84]  Shadlen MN, Newsome WT. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol. 2001;86: 1916–36.
[85]  Fuster J, Alexander G. Neuron activity related to short-term memory. Science (80-). 1971; 652–654.
[86]  Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of State Calculations by Fast Computing Machines. J Chem Phys. 1953;21: 1087. doi: 10.1063/1.1699114.
[87]  Hastings WK. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika. 1970;57: 97–109. doi: 10.1093/biomet/57.1.97
[88]  Shimazaki H, Shinomoto S. Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci. 2010;29: 171–82. doi: 10.1007/s10827-009-0180-4. pmid:19655238
[89]  Van Essen D, Drury H, Dickson J, Harwell J, Hanlon D, Anderson C. An integrated software suite for surface-based analyses of cerebral cortex. J Am Med Informatics Assoc. 2001;8: 443–459.
[90]  Friston KJ, Fletcher P, Josephs O, Holmes a, Rugg MD, Turner R. Event-related fMRI: characterizing differential responses. Neuroimage. 1998;7: 30–40. doi: 10.1006/nimg.1997.0306. pmid:9500830
[91]  Pollmann S, Dove a, Yves von Cramon D, Wiggins CJ. Event-related fMRI: comparison of conditions with varying BOLD overlap. Hum Brain Mapp. 2000;9: 26–37.


comments powered by Disqus