All Title Author
Keywords Abstract

Interleukin 21 Signaling in B Cells Is Required for Efficient Establishment of Murine Gammaherpesvirus Latency

DOI: 10.1371/journal.ppat.1004831

Full-Text   Cite this paper   Add to My Lib


The human gammaherpesviruses take advantage of normal B cell differentiation pathways to establish life-long infection in memory B cells. Murine gammaherpesvirus 68 (MHV68) infection of laboratory strains of mice also leads to life-long infection in memory B cells. To gain access to the memory B cell population, MHV68 infected B cells pass through the germinal center reaction during the onset of latency and require signals from T follicular helper (TFH) cells for proliferation. Interleukin 21 (IL-21), one of the secreted factors produced by TFH cells, plays an important role in both the maintenance of the germinal center response as well as in the generation of long-lived plasma cells. Using IL-21R deficient mice, we show that IL-21 signaling is required for efficient establishment of MHV68 infection. In the absence of IL-21 signaling, fewer infected splenocytes are able to gain access to either the germinal center B cell population or the plasma cell population – the latter being a major site of MHV68 reactivation. Furthermore, the germinal center B cell population in IL-21R-/- mice is skewed towards the non-proliferating centrocyte phenotype, resulting in reduced expansion of infected B cells. Additionally, the reduced frequency of infected plasma cells results in a significant reduction in the frequency of splenocytes capable of reactivating virus. This defect in establishment of MHV68 infection is intrinsic to B cells, as MHV68 preferentially establishes infection in IL-21R sufficient B cells in mixed bone marrow chimeric mice. Taken together, these data indicate that IL-21 signaling plays multiple roles during establishment of MHV68 infection, and identify IL-21 as a critical TFH cell-derived factor for efficient establishment of gammaherpesvirus B cell latency.


[1]  Thorley-Lawson DA (2001) Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1: 75–82. pmid:11905817 doi: 10.1038/35095584
[2]  Uchida J, Yasui T, Takaoka-Shichijo Y, Muraoka M, Kulwichit W, et al. (1999) Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science 286: 300–303. pmid:10514374 doi: 10.1126/science.286.5438.300
[3]  Caldwell RG, Wilson JB, Anderson SJ, Longnecker R (1998) Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9: 405–411. pmid:9768760 doi: 10.1016/s1074-7613(00)80623-8
[4]  Collins CM, Boss JM, Speck SH (2009) Identification of infected B-cell populations by using a recombinant murine gammaherpesvirus 68 expressing a fluorescent protein. J Virol 83: 6484–6493. doi: 10.1128/JVI.00297-09. pmid:19386718
[5]  Collins CM, Speck SH (2012) Tracking murine gammaherpesvirus 68 infection of germinal center B cells in vivo. PLoS One 7: e33230. doi: 10.1371/journal.pone.0033230. pmid:22427999
[6]  Flano E, Kim IJ, Woodland DL, Blackman MA (2002) Gamma-herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells. J Exp Med 196: 1363–1372. pmid:12438427 doi: 10.1084/jem.20020890
[7]  Marques S, Efstathiou S, Smith KG, Haury M, Simas JP (2003) Selective gene expression of latent murine gammaherpesvirus 68 in B lymphocytes. J Virol 77: 7308–7318. pmid:12805429 doi: 10.1128/jvi.77.13.7308-7318.2003
[8]  Willer DO, Speck SH (2003) Long-term latent murine Gammaherpesvirus 68 infection is preferentially found within the surface immunoglobulin D-negative subset of splenic B cells in vivo. J Virol 77: 8310–8321. pmid:12857900 doi: 10.1128/jvi.77.15.8310-8321.2003
[9]  Collins CM, Speck SH (2014) Expansion of murine gammaherpesvirus latently infected B cells requires T follicular help. PLoS Pathog 10: e1004106. doi: 10.1371/journal.ppat.1004106. pmid:24789087
[10]  Takemori T, Kaji T, Takahashi Y, Shimoda M, Rajewsky K (2014) Generation of memory B cells inside and outside germinal centers. Eur J Immunol 44: 1258–1264. doi: 10.1002/eji.201343716. pmid:24610726
[11]  Oracki SA, Walker JA, Hibbs ML, Corcoran LM, Tarlinton DM (2010) Plasma cell development and survival. Immunol Rev 237: 140–159. doi: 10.1111/j.1600-065X.2010.00940.x. pmid:20727034
[12]  Victora GD, Nussenzweig MC (2012) Germinal centers. Annu Rev Immunol 30: 429–457. doi: 10.1146/annurev-immunol-020711-075032. pmid:22224772
[13]  Zotos D, Tarlinton DM (2012) Determining germinal centre B cell fate. Trends Immunol 33: 281–288. doi: 10.1016/ pmid:22595532
[14]  Gitlin AD, Shulman Z, Nussenzweig MC (2014) Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509: 637–640. doi: 10.1038/nature13300. pmid:24805232
[15]  Chtanova T, Tangye SG, Newton R, Frank N, Hodge MR, et al. (2004) T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 173: 68–78. pmid:15210760 doi: 10.4049/jimmunol.173.1.68
[16]  Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, et al. (2008) Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29: 138–149. doi: 10.1016/j.immuni.2008.05.009. pmid:18599325
[17]  Rasheed AU, Rahn HP, Sallusto F, Lipp M, Muller G (2006) Follicular B helper T cell activity is confined to CXCR5(hi)ICOS(hi) CD4 T cells and is independent of CD57 expression. Eur J Immunol 36: 1892–1903. pmid:16791882 doi: 10.1002/eji.200636136
[18]  Vogelzang A, McGuire HM, Yu D, Sprent J, Mackay CR, et al. (2008) A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29: 127–137. doi: 10.1016/j.immuni.2008.06.001. pmid:18602282
[19]  Bessa J, Kopf M, Bachmann MF (2010) Cutting edge: IL-21 and TLR signaling regulate germinal center responses in a B cell-intrinsic manner. J Immunol 184: 4615–4619. doi: 10.4049/jimmunol.0903949. pmid:20368279
[20]  Linterman MA, Beaton L, Yu D, Ramiscal RR, Srivastava M, et al. (2010) IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J Exp Med 207: 353–363. doi: 10.1084/jem.20091738. pmid:20142429
[21]  Zotos D, Coquet JM, Zhang Y, Light A, D'Costa K, et al. (2010) IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J Exp Med 207: 365–378. doi: 10.1084/jem.20091777. pmid:20142430
[22]  Jin H, Carrio R, Yu A, Malek TR (2004) Distinct activation signals determine whether IL-21 induces B cell costimulation, growth arrest, or Bim-dependent apoptosis. J Immunol 173: 657–665. pmid:15210829 doi: 10.4049/jimmunol.173.1.657
[23]  Rasheed MA, Latner DR, Aubert RD, Gourley T, Spolski R, et al. (2013) Interleukin-21 is a critical cytokine for the generation of virus-specific long-lived plasma cells. J Virol 87: 7737–7746. doi: 10.1128/JVI.00063-13. pmid:23637417
[24]  Zeng R, Spolski R, Casas E, Zhu W, Levy DE, et al. (2007) The molecular basis of IL-21-mediated proliferation. Blood 109: 4135–4142. pmid:17234735 doi: 10.1182/blood-2006-10-054973
[25]  Konforte D, Paige CJ (2006) Identification of cellular intermediates and molecular pathways induced by IL-21 in human B cells. J Immunol 177: 8381–8392. pmid:17142735 doi: 10.4049/jimmunol.177.12.8381
[26]  Fornek JL, Tygrett LT, Waldschmidt TJ, Poli V, Rickert RC, et al. (2006) Critical role for Stat3 in T-dependent terminal differentiation of IgG B cells. Blood 107: 1085–1091. pmid:16223771 doi: 10.1182/blood-2005-07-2871
[27]  Ozaki K, Spolski R, Ettinger R, Kim HP, Wang G, et al. (2004) Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 173: 5361–5371. pmid:15494482 doi: 10.4049/jimmunol.173.9.5361
[28]  Arguni E, Arima M, Tsuruoka N, Sakamoto A, Hatano M, et al. (2006) JunD/AP-1 and STAT3 are the major enhancer molecules for high Bcl6 expression in germinal center B cells. Int Immunol 18: 1079–1089. pmid:16702165 doi: 10.1093/intimm/dxl041
[29]  Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM (1997) Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276: 589–592. pmid:9110977 doi: 10.1126/science.276.5312.589
[30]  Liang X, Collins CM, Mendel JB, Iwakoshi NN, Speck SH (2009) Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes. PLoS Pathog 5: e1000677. doi: 10.1371/journal.ppat.1000677. pmid:19956661
[31]  Wilson SJ, Tsao EH, Webb BL, Ye H, Dalton-Griffin L, et al. (2007) X box binding protein XBP-1s transactivates the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF50 promoter, linking plasma cell differentiation to KSHV reactivation from latency. J Virol 81: 13578–13586. pmid:17928342 doi: 10.1128/jvi.01663-07
[32]  Laichalk LL, Thorley-Lawson DA (2005) Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol 79: 1296–1307. pmid:15613356 doi: 10.1128/jvi.79.2.1296-1307.2005
[33]  Sun CC, Thorley-Lawson DA (2007) Plasma cell-specific transcription factor XBP-1s binds to and transactivates the Epstein-Barr virus BZLF1 promoter. J Virol 81: 13566–13577. pmid:17898050 doi: 10.1128/jvi.01055-07
[34]  Yu F, Feng J, Harada JN, Chanda SK, Kenney SC, et al. (2007) B cell terminal differentiation factor XBP-1 induces reactivation of Kaposi's sarcoma-associated herpesvirus. FEBS Lett 581: 3485–3488. pmid:17617410 doi: 10.1016/j.febslet.2007.06.056
[35]  Bhende PM, Dickerson SJ, Sun X, Feng WH, Kenney SC (2007) X-box-binding protein 1 activates lytic Epstein-Barr virus gene expression in combination with protein kinase D. J Virol 81: 7363–7370. pmid:17494074 doi: 10.1128/jvi.00154-07
[36]  Decalf J, Godinho-Silva C, Fontinha D, Marques S, Simas JP (2014) Establishment of murine gammaherpesvirus latency in B cells is not a stochastic event. PLoS Pathog 10: e1004269. doi: 10.1371/journal.ppat.1004269. pmid:25079788
[37]  Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, et al. (2010) Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143: 592–605. doi: 10.1016/j.cell.2010.10.032. pmid:21074050
[38]  Schwickert TA, Lindquist RL, Shakhar G, Livshits G, Skokos D, et al. (2007) In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446: 83–87. pmid:17268470 doi: 10.1038/nature05573
[39]  Suzuki K, Grigorova I, Phan TG, Kelly LM, Cyster JG (2009) Visualizing B cell capture of cognate antigen from follicular dendritic cells. J Exp Med 206: 1485–1493. doi: 10.1084/jem.20090209. pmid:19506051
[40]  Konforte D, Paige CJ (2009) Interleukin-21 regulates expression of the immediate-early lytic cycle genes and proteins in Epstein-Barr Virus infected B cells. Virus Res 144: 339–343. doi: 10.1016/j.virusres.2009.05.003. pmid:19447148
[41]  Konforte D, Simard N, Paige CJ (2008) Interleukin-21 regulates expression of key Epstein-Barr virus oncoproteins, EBNA2 and LMP1, in infected human B cells. Virology 374: 100–113. doi: 10.1016/j.virol.2007.12.027. pmid:18222514
[42]  Kis LL, Salamon D, Persson EK, Nagy N, Scheeren FA, et al. (2010) IL-21 imposes a type II EBV gene expression on type III and type I B cells by the repression of C- and activation of LMP-1-promoter. Proc Natl Acad Sci U S A 107: 872–877. doi: 10.1073/pnas.0912920107. pmid:20080768
[43]  Nagy N, Adori M, Rasul A, Heuts F, Salamon D, et al. (2012) Soluble factors produced by activated CD4+ T cells modulate EBV latency. Proc Natl Acad Sci U S A 109: 1512–1517. doi: 10.1073/pnas.1120587109. pmid:22307606
[44]  Ozaki K, Spolski R, Feng CG, Qi CF, Cheng J, et al. (2002) A critical role for IL-21 in regulating immunoglobulin production. Science 298: 1630–1634. pmid:12446913 doi: 10.1126/science.1077002
[45]  Weck KE, Kim SS, Virgin HI, Speck SH (1999) B cells regulate murine gammaherpesvirus 68 latency. J Virol 73: 4651–4661. pmid:10233924
[46]  Weck KE, Barkon ML, Yoo LI, Speck SH, Virgin HI (1996) Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. J Virol 70: 6775–6780. pmid:8794315


comments powered by Disqus

Contact Us


微信:OALib Journal