Einstein’s Gravitational Field Approach to Dark Matter and Dark Energy—Geometric Particle Decay into the Vacuum Energy Generating Higgs Boson and Heavy Quark Mass
During an interview at the Niels Bohr Institute David Bohm stated, “according to Einstein, particles should eventually emerge … as singularities, or very strong regions of stable pulses of (the gravitational) field” [1]. Starting from this premise, we show spacetime, indeed, manifests stable pulses (n-valued gravitons) that decay into the vacuum energy to generate all three boson masses (including Higgs), as well as heavy-quark mass; and all in precise agreement with the 2010 CODATA report on fundamental constants. Furthermore, our relativized quantum physics approach (RQP) answers to the mystery surrounding dark energy, dark matter, accelerated spacetime, and why ordinary matter dominates over antimatter.
References
[1]
Interview with David Bohm at the Niels Bohr Institute in Copenhagen (1989)
[2]
Lehmkuhl, D. Talk at MCMP. “Einstein’s Approach to Quantum Mechanics”. http://www.youtube.com/watch?v=zbsbc0MfdlE
Harko, T. and Lobo, F.S.N. (2011) Physical Review D, 83, Article ID: 124051. Harko, T. and Lobo, F.S.N. (2013) Cosmological Anisotropy from Non-Comoving Dark Matter and Dark Energy. http://arxiv.org/abs/1304.0757
[14]
Peebles, P.J.E. (2000) The Astrophysical Journal, 534, L127.
[15]
Corbel, S., Coriat, M., Brocksopp, C., Tzioumis, A.K., Fender, R.P., Tomsick, J.A., et al. (2013) Monthly Notices of the Royal Astronomical Society, 428, 2500-2515. http://dx.doi.org/10.1093/mnras/sts215
[16]
Hawking, S. (1974) Nature, 248, 30-31. http://dx.doi.org/10.1038/248030a0
[17]
Bertone, G., Fornasa, M., Taoso, M. and Zentner, A.R. (2009) New Journal of Physics, 11, Article ID: 105016. http://dx.doi.org/10.1088/1367-2630/11/10/105016
[18]
Bird, C., Kowalewski, R. and Pospelov, M. (2006) Modern Physics Letters A, 21, 457-478. http://dx.doi.org/10.1142/S0217732306019852
[19]
Falkowski, A. and No, J.M. (2013) Journal of High Energy Physics, 2013, 34.
[20]
Dreiner, H.K., Huck, M., Krämer, M., Schmeier, D. and Tattersall, J. (2013) Physical Review D, 87, Article ID: 075015. http://dx.doi.org/10.1103/PhysRevD.87.075015
Rix, H.-W. and Bovy, J. (2013) The Astronomy and Astrophysics Review, 21, 61.
[23]
Salucci, P., Lapi, A., Tonini, C., Gentile, G., Yegorova, I. and Klein, U. (2007) Monthly Notices of the Royal Astronomical Society, 378, 41-47. http://dx.doi.org/10.1111/j.1365-2966.2007.11696.x
[24]
Boylan-Kolchin, M., Springel, V., White, S.D.M. and Jenkins, A. (2010) Monthly Notices of the Royal Astronomical Society, 406, 896.
[25]
Einasto, J. (2010) Dark Matter. http://arxiv.org/abs/0901.0632
[26]
Nestia, F. and Salucci, P. (2013) The Dark Matter Halo of the Milky Way, AD 2013. http://arxiv.org/abs/1304.5127
[27]
Gnedin, O.Y., Brown, W.R., Geller, M.J. and Kenyon, S.J. (2010) The Astrophysical Journal, 720, L108-L112. http://dx.doi.org/10.1088/2041-8205/720/1/L108
[28]
Anderhalden, D., Schneider, A., Maccio, A.V., Diemand, J. and Bertone, G. (2013) Journal of Cosmology and Astroparticle Physics, 2013, Article ID: 014.
[29]
van der Marel, R.P., Fardal, M., Besla, G., Beaton, R.L., Sohn, S.T., Anderson, J., et al. (2012) The Astrophysical Journal, 753, 8. http://dx.doi.org/10.1088/0004-637X/753/1/8
[30]
Robotham, A.S.G., Baldry, I.K., Bland-Hawthorn, J., Driver, S.P., Loveday, J., Norberg, P., et al. (2012) Monthly Notices of the Royal Astronomical Society, 424, 1448-1453. http://dx.doi.org/10.1111/j.1365-2966.2012.21332.x
Bovy, J. and Tremaine, S. (2012) The Astrophysical Journal, 756, 89. http://dx.doi.org/10.1088/0004-637X/756/1/89
[36]
Christensen, W.J. (2007) General Relativity and Gravitation, 39, 105-110. http://dx.doi.org/10.1007/s10714-006-0360-8
[37]
Mohr, P.J., Taylor, B.N. and Newell, D.B. (2012) Table 1.1. Reviewed 2013 by P.J. Mohr (NIST). Mainly from the CODATA Recommended Values of the Fundamental Physical Constants: 2010 by P. J. Mohr, B. N. Taylor, and D.B. Newell in Rev. Mod. Phys. 84, 1527 (2012). http://dx.doi.org/10.1103/RevModPhys.84.1527
[38]
Maxwell, J.C. (1865) Philosophical Transactions of the Royal Society of London, 155, 459-512. http://dx.doi.org/10.1098/rstl.1865.0008
[39]
Huggins, E.R. (1962) Quantum Mechanics of the Interaction of Gravity with Electrons: Theory of Spin-Two Field Coupled to Energy. Ph.D. Dissertation, California Institute of Technology, Pasadena.
[40]
Feynman, R. (1962-63) Lectures on Gravitation. California Institute of Technology, Pasadena.
[41]
Fierz, M. and Pauli, W. (1939) Proceedings of the Royal Society A, 173, 211-232. http://dx.doi.org/10.1098/rspa.1939.0140
[42]
Rosen, N. (1940) Physical Review, 57, 150-153. http://dx.doi.org/10.1103/PhysRev.57.150
[43]
Gupta, S.N. (1952) Proceedings of the Royal Society A, 65, 608.
Padmanabhan, T. (2008) International Journal of Modern Physics D, 17, 367-398. http://dx.doi.org/10.1142/S0218271808012085
[48]
Bizdedea, C., Cioroianu, E.M., Danehkar, A., Iordache, M., Saliu, S.O. and Sararu, S.C. (2009) The European Physical Journal C, 63, 491-519. http://dx.doi.org/10.1140/epjc/s10052-009-1105-0
[49]
Butcher, L.M., Hobson, M. and Lasenby, A. (2009) Physical Review D, 80, Article ID: 084014. http://dx.doi.org/10.1103/PhysRevD.80.084014
[50]
Takook, M.V., Tanhayi, M.R. and Fatemi, S. (2010) Journal of Mathematical Physics, 51, Article ID: 032503. http://dx.doi.org/10.1063/1.3321581
[51]
Fronsdal, C. (1978) Physical Review D, 18, 3624-3629. http://dx.doi.org/10.1103/PhysRevD.18.3624