All Title Author
Keywords Abstract

One Dimensional Relativistic Particle in a Quadratic Dissipative Medium Subjected to a Force That Depends on the Position

DOI: 10.4236/jmp.2015.69122, PP. 1185-1188

Keywords: Lagrangian, Hamiltonian, Constant of Motion, Dissipation, Relativistic

Full-Text   Cite this paper   Add to My Lib


We will find a constant of motion with energy units for a relativistic particle moving in a quadratic dissipative medium subjected to a force which depends on the position. Then, we will find the Lagrangian and the Hamiltonian of the equation of motion in a time interval such that the velocity does not change its sign. Finally, we will see that the Lagrangian and Hamiltonian have some problems.


[1]  Dodonov, V.P., Manko, V.I. and Skarzhinsky, V.D. (1981) Hadronic Journal, 4, 1734.
[2]  Okubo, S. (1980) Physical Review D, 22, 919.
[3]  Glauber, R. and Manko, V.I. (1984) Soviet Physics JETP, 60, 450.
[4]  Lpez, G. (1996) Annals of Physics, 251, 372-383.
[5]  Lpez, G. (1998) International Journal of Theoretical Physics, 37, 1617-1623.
[6]  Lpez, G., Lpez, X.E. and Gonzlez, G. (2007) International Journal of Theoretical Physics, 46, 149-156.
[7]  Musielak, Z.E. (2008) Journal of Physics A: Mathematical and Theoretical, 41, Article ID: 055205.
[8]  Carinena, J.F. and Ranada, M.F. (2005) Journal of Mathematical Physics, 46, Article ID: 062703.
[9]  Sa Borges, J., Epele, L.N., Fanchiotti, H., Garca Canal, C.A. and Simao, F.R.A. (1987) The Quantization of Quadratic Friction Revisited.
[10]  Lpez, G.V., Montes, G.C. and Zanudo, J.G.T. (2015) Journal of Modern Physics, 6, 121-125.
[11]  Leubner, C. (1987) Physical Review A, 86, 9.
[12]  Yan, C.C. (1981) American Journal of Physics, 49, 269.


comments powered by Disqus