全部 标题 作者
关键词 摘要

PeerJ  2015 

Intragenomic polymorphisms among high-copy loci: a genus-wide study of nuclear ribosomal DNA in Asclepias (Apocynaceae)

DOI: 10.7717/peerj.718

Keywords: Concerted evolution,Genome skimming,High-copy,Intragenomic polymorphism,Partial SNP (pSNP),Nuclear ribosomal DNA (nrDNA),Intra-individual site polymorphism,2ISP,Asclepias,ITS

Full-Text   Cite this paper   Add to My Lib


Despite knowledge that concerted evolution of high-copy loci is often imperfect, studies that investigate the extent of intragenomic polymorphisms and comparisons across a large number of species are rarely made. We present a bioinformatic pipeline for characterizing polymorphisms within an individual among copies of a high-copy locus. Results are presented for nuclear ribosomal DNA (nrDNA) across the milkweed genus, Asclepias. The 18S-26S portion of the nrDNA cistron of Asclepias syriaca served as a reference for assembly of the region from 124 samples representing 90 species of Asclepias. Reads were mapped back to each individual’s consensus and at each position reads differing from the consensus were tallied using a custom perl script. Low frequency polymorphisms existed in all individuals (mean = 5.8%). Most nrDNA positions (91%) were polymorphic in at least one individual, with polymorphic sites being less frequent in subunit regions and loops. Highly polymorphic sites existed in each individual, with highest abundance in the “noncoding” ITS regions. Phylogenetic signal was present in the distribution of intragenomic polymorphisms across the genus. Intragenomic polymorphisms in nrDNA are common in Asclepias, being found at higher frequency than any other study to date. The high and variable frequency of polymorphisms across species highlights concerns that phylogenetic applications of nrDNA may be error-prone. The new analytical approach provided here is applicable to other taxa and other high-copy regions characterized by low coverage genome sequencing (genome skimming).


[1]  álvarez I, Wendel JF. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Plant Molecular Evolution 29:417-434
[2]  Bai C, Alverson WS, Follansbee A, Waller DM. 2012. New reports of nuclear DNA content for 407 vascular plant taxa from the United States. Annals of Botany 110:1623-1629
[3]  Bainard JD, Bainard LD, Henry TA, Fazekas AJ, Newmaster SG. 2012. A multivariate analysis of variation in genome size and endoreduplication in angiosperms reveals strong phylogenetic signal and association with phenotypic traits. New Phytologist 196:1240-1250
[4]  Baldwin BG. 1992. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molecular Phylogenetics and Evolution 1:3-16
[5]  Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden 82:247-277
[6]  Bik HM, Fournier D, Sung W, Bergeron RD, Thomas WK. 2013. Intra-genomic variation in the ribosomal repeats of nematodes. PLoS ONE 8:e78230
[7]  Buckler ES, Ippolito A, Holtsford TP. 1997. The evolution of ribosomal DNA divergent paralogues and phylogenetic implications. Genetics 145:821-832
[8]  Clark CG, Tague BW, Ware VC, Gerbi SA. 1984. Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications. Nucleic Acids Research 12:6197-6220
[9]  Delcher AL, Phillippy A, Carlton J, Salzberg SL. 2002. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Research 30:2478-2483
[10]  Fishbein M, Chuba D, Ellison C, Mason-Gamer RJ, Lynch SP. 2011. Phylogenetic relationships of Asclepias (Apocynaceae) inferred from non-coding chloroplast DNA sequences. Systematic Botany 36:1008-1023
[11]  Fox J, Weisberg S. 2011. An R companion to applied regression. Thousand Oaks, CA: Sage.
[12]  Ganley ARD, Kobayashi T. 2007. Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Research 17:184-191
[13]  Garland T, Dickerman AW, Janis CM, Jones JA. 1993. Phylogenetic analysis of covariance by computer simulation. Systematic Biology 42:265-292
[14]  Gernandt DS, Liston A. 1999. Internal transcribed spacer region evolution in Larix and Pseudotsuga (Pinaceae) American Journal of Botany 86:711-723
[15]  Gordon A. 2008. FASTX toolkit. Available at http://hannonlab.cshl.edu/fastx_toolkit/
[16]  Hamby RK, Zimmer EA. 1988. Ribosomal RNA sequences for inferring phylogeny within the grass family (Poaceae) Plant Systematics and Evolution 160:29-37
[17]  Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129-131
[18]  Hillis DM, Dixon MT. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology 66:411-453
[19]  Karvonen P, Savolainen O. 1993. Variation and inheritance of ribosomal DNA in Pinus sylvestris L. (Scots pine) Heredity 71:614-622
[20]  Knaus B. 2010. Short read toolbox. Available at http://brianknaus.com/software/srtoolbox/
[21]  Kolosha VO, Fodor I. 1990. Nucleotide sequence of Citrus limon 26S ribosomal-RNA gene and secondary structure model of its RNA. Plant Molecular Biology 14:147-161
[22]  Kovarik A, Pires JC, Leitch AR, Lim KY, Sherwood AM, Matyasek R, Rocca J, Soltis DE, Soltis PS. 2005. Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 169:931-944
[23]  Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biology 5:R12
[24]  Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760
[25]  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. 1000 genome project data processing subgroup, the sequence alignment/map format and SAMtools. Bioinformatics 25:2078-2079
[26]  Lorenz R, Bernhart S, Honer zu Siederdissen C, Tafer H, Flamm C, Stadler P, Hofacker I. 2011. ViennaRNA Package 2.0. Algorithms for Molecular Biology 6:26
[27]  Maddison WP, Maddison DR. 2011. Mesquite: a modular system for evolutionary analysis. Available at http://mesquiteproject.org/
[28]  Maddison WP, Maddison DR, Midford PE. 2011. Tree farm package for mesquite. Available at http://mesquiteproject.org/mesquite2.5/Mesquite_Folder/docs/mesquite/Diversification/diversification.html
[29]  Nguyen P, Ma J, Pei D, Obert C, Cheng C, Geiger T. 2011. Identification of errors introduced during high throughput sequencing of the T cell receptor repertoire. BMC Genomics 12:106
[30]  Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877-884
[31]  Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289-290
[32]  Potts AJ, Hedderson TA, Grimm GW. 2014. Constructing phylogenies in the presence of intra-individual site polymorphisms (2ISPs) with a focus on the nuclear ribosomal cistron. Systematic Biology 63:1-16
[33]  Ratan A. 2009. Assembly algorithms for next-generation sequence data. PhD Dissertation Thesis, University Park, Pennsylvania, USA: Pennsylvania State University
[34]  R Core Team. 2014. R: a language and environment for statistical computing Vienna: R Foundation for Statistical Computing.
[35]  Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things) Methods in Ecology and Evolution 3:217-223
[36]  Rzhetsky A. 1995. Estimating substitution rates in ribosomal RNA genes. Genetics 141:771-783
[37]  Schl?tterer C, Tautz D. 1994. Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Current Biology 4:777-783
[38]  Simon UK, Trajanoski S, Kroneis T, Sedlmayr P, Guelly C, Guttenberger H. 2012. Accession-specific haplotypes of the internal transcribed spacer region in Arabidopsis thaliana—a means for barcoding populations. Molecular Biology and Evolution 29:2231-2239
[39]  Song J, Shi L, Li D, Sun Y, Niu Y, Chen Z, Luo H, Pang X, Sun Z, Liu C, Lv A, Deng Y, Larson-Rabin Z, Wilkinson M, Chen S. 2012. Extensive pyrosequencing reveals frequent intra-genomic variations of internal transcribed spacer regions of nuclear ribosomal DNA. PLoS ONE 7:e43971
[40]  Stage DE, Eickbush TH. 2007. Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Research 17:1888-1897
[41]  Straub S, Fishbein M, Livshultz T, Foster Z, Parks M, Weitemier K, Cronn R, Liston A. 2011. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing. BMC Genomics 12:211
[42]  Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A. 2012. Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. American Journal of Botany 99:349-364
[43]  Venables WN, Ripley BD. 2002. Modern applied statistics with S. New York: Springer.
[44]  Weitemier K, Straub SCK, Cronn RC, Fishbein M, Schmickl R, McDonnell A, Liston A. 2014. Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences 1400042
[45]  West C, James SA, Davey RP, Dicks J, Roberts IN. 2014. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species. Systematic Biology 63:543-554
[46]  Zimmer EA, Jupe ER, Walbot V. 1988. Ribosomal gene structure, variation and inheritance in maize and its ancestors. Genetics 120:1125-1136


comments powered by Disqus