All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles

Toxicidad aguda y crónica del lindano sobre Ceriodaphnia cornuta (Cladocera: Daphniidae) Acute and chronic toxicity of lindane on Ceriodaphnia cornuta (Cladocera: Daphniidae)

The use of PCR-RFLP to genetically distinguish the morphologically close species: Ceriodaphnia dubia Richard, 1894 and Ceriodaphnia silvestrii Daday, 1902 (Crustacea Cladocera)

The influence of algal densities on the toxicity of chromium for Ceriodaphnia dubia Richard (Cladocera, Crustacea)

Efectos del efluente de curtiembre sobre ceriodaphnia dubia (crustacea, cladocera) en condiciones experimentales

Conducta alimentaria de Daphnia ambigua Scourfield 1947, Moina micrura Kurz 1874 y Ceriodaphnia dubia Richard 1895 (Cladocera) frente a un gradiente de concentración de alimento

Conducta alimentaria de Daphnia ambigua Scourfield 1947, Moina micrura Kurz 1874 y Ceriodaphnia dubia Richard 1895 (Cladocera) frente a un gradiente de concentración de alimento Feeding behaviour of Daphnia ambigua Scourfield 1947, Moina micrura Kurz 1874 and Ceriodaphnia dubia Richard 1895 (Cladocera) under a food concentration gradient

Crescimento populacional e análise isotópica de Diaphanosoma spinolosum e Ceriodaphnia cornuta (Crustacea: Cladocera), alimentadas com diferentes fra es de seston natural = Population growth and stable isotope analyses of Diaphanosoma spinolosum and Ceriodaphnia cornuta (Crustacea: Cladocera) fed with different seston size fractions

Macrothrix flabelligera, a newly-recorded Cladocera Macrothricidae in Brazilian freshwaters

Estudios sobre la biología y ecología de Ceriodaphnia cornuta SARS: UNA REVISIóN

A cladistic analysis of the genera of Macrothricidae Norman & Brady (Crustacea, Cladocera, Radopoda)


Morphological and Molecular Identification of Three Ceriodaphnia Species (Cladocera: Daphniidae) from Australia

DOI: 10.1155/2014/258134

Full-Text   Cite this paper   Add to My Lib


Australian Ceriodaphnia (Cladocera: Daphniidae) are examined using morphological attributes and two mitochondrial DNA (COI and 16s) and one nuclear DNA (28s) gene fragments to differentiate the species. The sequence data supports the existence of three species, that is, C. dubia, one reinstated species C. spinata Henry, 1919, and one new species C. sp. 1. Morphological characteristics were also able to accurately separate the three species. Furthermore, genetic analysis of COI sequences from Ceriodaphnia supported three clades. The high degree of correlation between morphological and molecular identification in this study indicates that mitochondrial markers, COI and 16s, are appropriate molecular markers for species discrimination and identification of Ceriodaphnia. 1. Introduction Ceriodaphnia Dana, 1853 (Cladocera: Daphniidae), displays little diversification in terms of species richness and morphological disparity, with the genus currently comprising 14 “valid” species worldwide, predominantly based on morphology [1]. In addition, there are 21 species inquirenda and 24 species that are probably junior synonyms of previously described species [1]. There is limited morphological and genetic evidence to support this proliferation of the large number of proposed names. According to Smirnov and Timms (1983) [2], there are only five Ceriodaphnia species from Australia which includes one beaked species (‘beak’ = a rostral projection) i.e. C. cornuta Sars, 1885, and four non-beaked species C. dubia Richard, 1894, C. laticaudata Müller, 1867, C. quadrangula (Müller, 1785) and C. rotunda Sars, 1862. One further, non-beaked species, C. pulchella Sars, 1862, has been recorded since [3]. In addition to these, two more non-beaked species, C. planifrons Smith, 1909 and C. spinata Henry, 1919 were re-instated by Berner [4], thereby increasing the total number of recorded species from Australia to eight. The literature on Ceriodaphnia sp. generally points towards the absence of divergent morphological characters for this group. Additionally, the historical taxonomic descriptions are incomplete and primarily focused on the head, antennule, antennae, postabdomen, carapace, reticulation, and rarely trunk appendages of Ceriodaphnia. Where morphological evidence is unclear, molecular techniques can be used to improve our understanding of taxonomic divergence and speciation. Barnett et al. [5] emphasised that genetics has become an increasingly important parameter in the classification and identification of organisms in comparison to more traditional morphological


[1]  A. Kotov, L. Forró, N. M. Korovchinsky, and A. Petrusek, World Checklist of Freshwater Cladocera Species, 2013.
[2]  N. N. Smirnov and B. V. Timms, Revision of the Australian Cladocera (Crustacea), The Australian Museum, Sydney, Australia, 1983.
[3]  R. J. Shiel, “A guide to identification of Rotifers, Cladocerans and Copepods from Australian Inland Waters,” CRCFE and MDBC Identification Guide 3, Cooperative Research Centre for Freshwater Ecology, Murray-Darling Freshwater Research Centre, Albury, Australia, 1995.
[4]  D. B. Berner, “Rediscriptions of Ceriodaphnia planifrons and C. hakea, Smith 1909 and of C. spinata Henry, 1919 (Crustacea, Cladocera, Anomopoda, Daphniidae),” in Proceedings of the Joint Congress of ASL & NZLS, 2003.
[5]  A. J. Barnett, K. Finlay, and B. E. Beisner, “Functional diversity of crustacean zooplankton communities: towards a trait-based classification,” Freshwater Biology, vol. 52, no. 5, pp. 796–813, 2007.
[6]  J. W. Sites Jr. and J. C. Marshall, “Operational criteria for delimiting species,” Annual Review of Ecology, Evolution, and Systematics, vol. 35, pp. 199–227, 2004.
[7]  P. D. N. Hebert, “A revision of the taxonomy of the genus Daphnia (Crustacea: Daphnidae) in south-eastern Australia,” Australian Journal of Zoology, vol. 25, pp. 371–398, 1977.
[8]  J. A. H. Benzie, “Phylogenetic relationships within the genus Daphnia ( Cladocera: Daphniidae) in Australia, determined by electrophoretically detectable protein variation.,” Australian Journal of Marine & Freshwater Research, vol. 37, no. 2, pp. 251–260, 1986.
[9]  J. K. Colbourne, C. C. Wilson, and P. D. N. Hebert, “The systematics of Australian Daphnia and Daphniopsis (Crustacea: Cladocera): A shared phylogenetic history transformed by habitat-specific rates of evolution,” Biological Journal of the Linnean Society, vol. 89, no. 3, pp. 469–488, 2006.
[10]  P. D. N. Hebert and T. L. Finston, “Genetic differentiation in Daphnia obtusa: a continental perspective,” Freshwater Biology, vol. 35, no. 2, pp. 311–321, 1996.
[11]  K. Schwenk, Evolutionary Genetics of Daphnia Species Complex: Hybridism in Syntopy, Publication 2231, Netherlands Institute of Ecology, Centre for Limnology, Nieuwersluis, The Netherlands, 1996.
[12]  K. Schwenk, A. Sand, M. Boersma, et al., “Genetic markers, genealogies and biogeographic patterns in the cladocera,” Aquatic Ecology, vol. 32, no. 1, pp. 37–51, 1998.
[13]  D. J. Taylor and P. D. N. Hebert, “Daphnia galeata mendotae as a cryptic species complex with interspecific hybrids,” Limnology and Oceanography, vol. 37, no. 3, pp. 658–665, 1992.
[14]  D. J. Taylor and P. D. N. Hebert, “Cryptic intercontinental hybridization in Daphnia (Crustacea): the ghost of introductions past,” Proceedings of the Royal Society B: Biological Sciences, vol. 254, no. 1340, pp. 163–168, 1993.
[15]  L. J. Weider and A. Hobaek, “Molecular biogeography of clonal lineages in a high-arctic apomictic Daphnia complex,” Molecular Ecology, vol. 3, no. 5, pp. 497–506, 1994.
[16]  J. K. Colbourne, M. E. Pfrender, D. Gilbert et al., “The ecoresponsive genome of Daphnia pulex,” Science, vol. 331, no. 6017, pp. 555–561, 2011.
[17]  V. Ko?inek, “Cladocera,” in A Guide to Tropical Freshwater Zooplankton, C. H. Fernando, Ed., pp. 69–122, Backhuys Publishers, Leiden, The Netherlands, 2002.
[18]  D. B. Berner, “Significance of head and carapace pores in Ceriodaphnia (Crustacea, Cladocera),” Hydrobiologia, vol. 145, no. 1, pp. 75–84, 1987.
[19]  D. B. Berner and G. Rakhmatullaeva, “A new species of Ceriodaphnia from Uzbekistan and Kazakhstan,” Hydrobiologia, vol. 442, pp. 29–39, 2001.
[20]  O. Folmer, M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek, “DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates.,” Molecular marine biology and biotechnology, vol. 3, no. 5, pp. 294–299, 1994.
[21]  C. Simon, F. Frati, A. Beckenbach, B. Crespi, H. Liu, and P. Flook, “Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers,” Annals of the Entomological Society of America, vol. 87, pp. 651–701, 1994.
[22]  D. Fontaneto, E. A. Herniou, C. Boschetti et al., “Independently evolving species in asexual bdelloid rotifers,” PLoS Biology, vol. 5, no. 4, article e87, 2007.
[23]  T. A. Hall, “BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT,” Nucleic Acids Symposium Series, vol. 41, pp. 95–98, 1999.
[24]  K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011.
[25]  T. M. Keane, T. J. Naughton, and J. O. McInerney, ModelGenerator: Amino Acid and Nucleotide Substitution Model Selection, National University of Ireland, Maynooth, Maynooth, Ireland, 2004.
[26]  S. Guindon and O. Gascuel, “A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood,” Systematic Biology, vol. 52, no. 5, pp. 696–704, 2003.
[27]  J. P. Huelsenbeck, F. Ronquist, R. Nielsen, and J. P. Bollback, “Bayesian inference of phylogeny and its impact on evolutionary biology,” Science, vol. 294, no. 5550, pp. 2310–2314, 2001.
[28]  A. Rambaut and A. Drummond, Tracer Version 1.5, Tracer, 2007,
[29]  M. Elías-Gutiérrez, M. Jerónimo, V. N. Ivanova, M. Valdez-moreno, and P. D. N. Hebert, “DNA barcodes for Cladocera and Copepoda from Mexico and Guatemala, highlights and new discoveries,” Zootaxa, vol. 42, no. 1839, pp. 1–42, 2008.
[30]  O. F. Müller, “Entomostraca seu Insecta Testacea, quae in aquis Daniae et Norvegiae reperit, descripsit et iconibus illustravit,” Lipsiae et Havniae, pp. 1–135, 1785.
[31]  P. E. Muller, “Danmarks Cladocera,” Naturqstorisk Tidsskrift, vol. 3, pp. 53–240, 1867.
[32]  G. O. Sars, “Meddeelte en af talrige Afbildninger ledsaget ovesigt af de ham i Omegmen af Christiania iagtagne Crustacea Cladocera,” Forhandlinger i Videnskabs-Selskabet i Christiania, vol. 1861, pp. 144–167, 1862.
[33]  G. O. Sars, “Fortsatte sit Foredrag over de af ham i Omegmen af Christiania iagttanne Crustacea,” Forhandlinger i Videnskabs-Selskabet i Christiania, vol. 1861, pp. 250–302, 1862.
[34]  W. Lilljeborg, Cladocera Sueciae; oder Beitr?ge zur kenntniss der in Schweden lebenden Krebsthiere von der Ordnung der Branchiopoden und der Unterordnung der Cladoceren, Druck der akademischen buchdruckerei E. Berling, Upsala, Germany, 1900.
[35]  A. A. Kotov and D. F. Ferrari, “The taxonomic research of Jules Richard on Cladocera (Crustacea: Branchiopoda) and his collection at the National Museum of Natural History, U.S.A,” Zootaxa, vol. 2551, pp. 37–64, 2010.
[36]  D. B. Berner, Taxonomy of Ceriodaphnia (Crustacea: Cladocera) in U.S. Environmental Protection Agency Cultures, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio, USA, 1986.
[37]  T. L. Greenwood, J. D. Green, and M. A. Chapman, “New Zealand Ceriodaphnia species: identification of Ceriodaphnia dubia Richard, 1894 and Ceriodaphnia cf. pulchella Sars,” New Zealand Journal of Marine and Freshwater Research, vol. 25, pp. 283–288, 1991.
[38]  M. Elías-Gutiérrez, F. M. Jerónimo, N. V. Ivanova, M. Valdez-Moreno, and P. D. N. Hebert, “DNA barcodes for Cladocera and Copepoda from Mexico and Guatemala, highlights and new discoveries,” Zootaxa, no. 1839, pp. 1–42, 2008.


comments powered by Disqus