All Title Author
Keywords Abstract

Biomass and Yield of Peanut Grown on Tropical Soil Amended with Sewage Sludge Contaminated with Lead

DOI: 10.1155/2012/896090

Full-Text   Cite this paper   Add to My Lib


Application of sewage sludge with high lead (Pb) contents may pollute soils and contaminate crops. The objective of this work was to evaluate peanut responses to application of sewage sludge with varying Pb contents in order to supply phosphorus (P) to the plant. A greenhouse experiment was carried out with peanut grown on soil sample from a medium-textured Haplustox. Treatments were arranged in 3 × 2?+?2 factorial scheme, replicated three times, distributed in randomized block design, and consisted of: three Pb rates applied to soil with sewage sludge (3, 21, and 42?mg?kg?1) × two times of sewage sludge application (30 days before peanut sowing and at the day of the sowing)?+?mineral fertilization?+?control (without sewage sludge and mineral fertilization). Sewage sludge was efficient to supply P to peanut. Sewage sludge containing high rates of Pb, when applied, did not harm biomass and yield of the plant, but increased HCl-extractable Pb in soil and Pb content in shoot, roots, and pod husks. Increase of Pb content in pod husks may represent contamination risk of kernels and their products with fragments from husks detached during manipulation or industrial processing of peanuts. 1. Introduction Lead in a naturally occurring trace element in soils with variable total concentrations depending on the parent material and prevalent pedogenetic processes [1], whereas its total content is far higher than the background concentrations in contaminated soils. Elevated Pb concentrations in soil may impact plants and soil microorganisms and cause serious effects in humans such as neurological problems and damages to the central nervous system [2]. Sewage sludge contains Pb and other heavy metals and its application on agricultural soils has been a way sought for disposal of high amounts produced of this waste particularly in large urban areas [3, 4]. While solving the problem of disposal repeated applications of sludge may increase Pb content in soils. Crops grown on these soils can uptake large Pb amounts and transfer it to edible parts [5]. Intake of these parts increases risks to human health. Sewage sludge has been used in agriculture with the purpose of improving soil properties and to supply nutrients to crops [6]. In S?o Paulo state, Brazil, research results show the possibility of using the sludge to supply nutrients to sugarcane without impairing yield and quality of stalks [7] and with low potential for contamination of soil-plant system by heavy metals, including Pb [8]. However, it is essential to know the responses of other crops which might


[1]  R. A. Goyer, “Lead toxicity: current concerns,” Environmental Health Perspectives, vol. 100, pp. 177–187, 1993.
[2]  J. Markusy and A. B. McBratney, “A review of the contamination of soil with lead. I. Origin, occurrence and chemical form of soil lead,” Progress in Environmental Science, vol. 2, no. 4, pp. 291–318, 2000.
[3]  J. F. Parr, E. Epstein, and G. B. Willson, “Composting sewage sludge for land application,” Agriculture and Environment, vol. 4, no. 2, pp. 123–137, 1978.
[4]  Y. Wei and Y. Liu, “Effects of sewage sludge compost application on crops and cropland in a 3-year field study,” Chemosphere, vol. 59, no. 9, pp. 1257–1265, 2005.
[5]  M. J. McLaughlin, D. R. Parker, and J. M. Clarke, “Metals and micronutrients—food safety issues,” Field Crops Research, vol. 60, no. 1-2, pp. 143–163, 1999.
[6]  R. P. Singh and M. Agrawal, “Potential benefits and risks of land application of sewage sludge,” Waste Management, vol. 28, no. 2, pp. 347–358, 2008.
[7]  L. C. Tasso Júnior, M. O. Marques, A. Franco et al., “Yield and quality of sugar cane cultivated in sewage sludge, vinasse and mineral fertilization supplied soil,” Engenharia Agrícola, vol. 27, no. 1, pp. 276–283, 2007 (Portuguese).
[8]  F. Camilotti, M. O. Marques, I. Andrioli, A. R. Silva, L. C. Tasso Júnior, and F. O. Nobile, “Heavy metals accumulation in sugarcane after application in sewage sludge and vinasse,” Engenharia Agrícola, vol. 27, no. 1, pp. 284–293, 2007 (Portuguese).
[9]  K. S. Balkcom, J. F. Adams, and D. L. Hartzog, “Peanut yield response to poultry litter and municipal sludge application,” Communications in Soil Science and Plant Analysis, vol. 34, no. 5-6, pp. 801–814, 2003.
[10]  B. van Raij, H. Cantarella, J. A. Quaggio, and A. M. C. Furlani, Eds., Recomenda??es de Aduba??o e Calagem Para o Estado de S?o Paulo, Instituto Agron?mico/Funda??o IAC, Campinas, Brazil, 1997.
[11]  S. Mohanty, N. K. Paikaray, and A. R. Rajan, “Availability and uptake of phosphorus from organic manures in groundnut (Arachis hypogea L.)-corn (Zea mays L.) sequence using radio tracer technique,” Geoderma, vol. 133, no. 3-4, pp. 225–230, 2006.
[12]  L. D. King and L. M. Hajjar, “The residual effect of sewage sludge on heavy metal content of tobacco and peanut,” Journal of Environmental Quality, vol. 19, no. 4, pp. 738–748, 1990.
[13]  W. Bettiol, O. A. Camargo, J. A. H. Galv?o, and R. Ghini, “Impacto ambiental do uso agrícola do lodo de esgoto: descri??o do estudo,” in Lodo de Esgoto: Impactos Ambientais na Agricultura, W. Bettiol and O. A. Camargo, Eds., pp. 17–23, Embrapa Meio Ambiente, Jaguariúna, Brazil, 2003.
[14]  A. Walkley, “A critical examination of a rapid method for determining organic carbon in soils – effect of variations in digestion conditions and of inorganic soil constituents,” Soil Science, vol. 63, no. 4, pp. 251–264, 1947.
[15]  B. van Raij, J. A. Quaggio, and N. M. Silva, “Extraction of phosphorus, potassium, calcium, and magnesium from soils by an ion-exchange resin procedure,” Communications in Soil Science and Plant Analysis, vol. 17, no. 5, pp. 547–566, 1986.
[16]  J. A. Quaggio, B. van Raij, and E. Malavolta, “Alternative use of the SMP-buffer solution to determine lime requirement of soils,” Communications in Soil Science and Plant Analysis, vol. 16, no. 3, pp. 245–260, 1985.
[17]  Cetesb—Companhia Ambiental do Estado de S?o Paulo, “Aplica??o de lodos de sistemas de tratamento biológico em áreas agrícolas – critérios para projeto e opera??o,” Norma Técnica P4.230, Cetesb, S?o Paulo, Brazil, 1999.
[18]  R. O. Miller, “Nitric-perchloric acid wet digestion in an open vessel,” in Handbook of Reference Methods for Plant Analysis, Y. P. Kalra, Ed., pp. 57–61, CRC Press, Boca Raton, Fla, USA, 1998.
[19]  D. R. Sauerbeck and P. Styperek, “Evaluation of methods for assessing the Cd and Zn availability from different soils and sources,” in Chemical Methods for Assessing Bio-Available Metal in Sludges and Soils, R. Leschber, R. D. Davies, and P. L’Hermite, Eds., pp. 49–66, Elsevier, London, UK, 1985.
[20]  H. C. Harris, “The effect on the growth of peanuts of nutrient deficiencies in the root and the pegging zone,” Plant Physiology, vol. 24, no. 1, pp. 150–161, 1949.
[21]  J. Nakagawa, I. Imaizumi, and C. A. V. Rosseto, “Effects of some phosphorus sources and liming on peanut production,” Pesquisa Agropecuária Brasileira, vol. 28, no. 4, pp. 421–431, 1993 (Portuguese).
[22]  M. S. Aulakh, B. S. Kabba, H. S. Baddesha, G. S. Bahl, and M. P. S. Gill, “Crop yields and phosphorus fertilizer transformations after 25 years of applications to a subtropical soil under groundnut-based cropping systems,” Field Crops Research, vol. 83, no. 3, pp. 283–296, 2003.
[23]  F. S. O. Rodrigues Filho, C. T. Feitosa, and M. A. N. Gerin, “Deficiency of macronutrients in peanuts,” Bragantia, vol. 47, no. 2, pp. 305–312, 1988 (Portuguese).
[24]  D. L. Lake, “Sludge disposal to land,” in Heavy Metals in Wastewater and Sludge Treatment Processes, J. N. Lester, Ed., pp. 91–130, CRC Press, Boca Raton, Fla, USA, 1987.
[25]  J. Barceló and Ch. Poschenrieder, “Respuestas de las plantas a la contaminación por metales pesados,” Suelo y Planta, vol. 2, pp. 345–361, 1992.
[26]  M. Wierzbicka, “Comparison of lead tolerance in Allium cepa with other plant species,” Environmental Pollution, vol. 104, no. 1, pp. 41–52, 1999.
[27]  S. Verma and R. S. Dubey, “Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants,” Plant Science, vol. 164, no. 4, pp. 645–655, 2003.
[28]  G. Tung and P. J. Temple, “Uptake and localization of lead in corn (Zea mays L.) seedlings, a study by histochemical and electron microscopy,” Science of the Total Environment, vol. 188, no. 2-3, pp. 71–85, 1996.
[29]  I. V. Seregin and V. B. Ivanov, “Histochemical investigation of cadmium and lead distribution in plants,” Russian Journal of Plant Physiology, vol. 44, no. 6, pp. 915–921, 1997.
[30]  I. V. Seregin and V. B. Ivanov, “Physiological aspects of cadmium and lead toxic effects on higher plants,” Russian Journal of Plant Physiology, vol. 48, no. 4, pp. 523–544, 2001.
[31]  M. D. Jarvis and D. W. M. Leung, “Chelated lead transport in Pinus radiata: an ultrastructural study,” Environmental and Experimental Botany, vol. 48, no. 1, pp. 21–32, 2002.
[32]  P. Sharma and R. S. Dubey, “Lead toxicity in plants,” Brazilian Journal of Plant Physiology, vol. 17, no. 1, pp. 35–52, 2005.
[33]  P. Brown, I. Atly Jefcoat, D. Parrish, S. Gill, and E. Graham, “Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution,” Advances in Environmental Research, vol. 4, no. 1, pp. 19–29, 2000.
[34]  S. Chamarthy, C. W. Seo, and W. E. Marshall, “Adsorption of selected toxic metals by modified peanut shells,” Journal of Chemical Technology and Biotechnology, vol. 76, no. 6, pp. 593–597, 2001.
[35]  S. Ricordel, S. Taha, I. Cisse, and G. Dorange, “Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling,” Separation and Purification Technology, vol. 24, no. 3, pp. 389–401, 2001.
[36]  M. R. Borges and E. L. M. Coutinho, “Heavy metals in soil after sewage sludge application. II – Availability,” Revista Brasileira de Ciência do Solo, vol. 28, no. 3, pp. 557–568, 2004 (Portuguese).


comments powered by Disqus

Contact Us


微信:OALib Journal