All Title Author
Keywords Abstract

Thermal Property and Ceramic Mechanism of Silicone/Mica/Silicone Oxide

DOI: 10.12677/MS.2014.46035, PP. 246-252

Keywords: 有机硅橡胶,陶瓷化,机理
Silicone Rubber
, Ceramization, Mechanism

Full-Text   Cite this paper   Add to My Lib


In this paper, methyl vinyl Phenyl Polysiloxane rubber (PVMQ) ablative composite filled with mica and silicone oxide was prepared. Its thermal properties were tested by TG-DSC analysis from room temperature to 1000?C. After it was fired at different temperatures, the products were analyzed by Fourier transform infrared spectrometer and X-ray diffraction. The results showed that when the addition of mica was 40, the residual rate at 1000?C was 66.21%. When the temperature was above 600?C, the filler and organic silicon rubber started to transform from organic to inorganic. As temperature rose, the extent of porcelain was gradually deepened. So the ceramic mechanism of the composite could be described that the silicon oxide decomposed from silicon rubber reacted with mica. Then eutectic mixture which had a bridge effect was formed at the edge of fillers and the ceramic products were obtained when cooled down.


[1]  贾修伟, 刘治国, 房晓敏 (2004) 溴化环氧树脂阻燃剂的热性能及其应用. 中国塑料, 12, 70-73.
[2]  Yang, D., Zhang, W. and Jiang, B.Z. (2013) Ceramizatin and oxidation behaviors of silicone rubber ablative composite under oxyacetylene flame. Ceramics International, 39, 1571-1581.
[3]  梁喆, 赵源, 彭小弟 (2007) 陶瓷化耐火硅橡胶的应用进展. 有机硅材料, 4, 234-235.
[4]  Mansouri, J., Wood, C.A., Roberts, K., et al. (2007) Investigation of the ceramifying process of modified silicone-si- licate compositions. Journal of Materials Science, 15, 6046-6055.
[5]  邵海彬, 张其土, 吴丽 (2011) 可陶瓷化硅橡胶的制备与性能. 南京工业大学学报(自然科学版), 1, 48-51.
[6]  魏方明, 王庭慰, 邵海彬 (2010) 硅氧烷基聚合物陶瓷化研究进展. 中国塑料, 10, 26.
[7]  周和平, 康树峰, 刘卫东 (2013) 一种陶瓷化硅橡胶热缩管及其生产方法. 中国专利: CN 103122095 A.
[8]  康树峰, 赵源, 刘卫东 (2013) 一种陶瓷化硅橡胶、制备方法及用途. 中国专利: CN 102964836 A.
[9]  周和平 (2014) 一种陶瓷化硅橡胶及其制备方法. 中国专利: CN 103554918 A.
[10]  何成龙, 何源 (2014) 一种陶瓷化硅橡胶电缆料及其制备方法. 中国专利: CN 103525092 A.
[11]  Yu, L., Zhou, S.T., Zou, H.W., et al. (2013) Thermal stability and ablation properties study of aluminum silicate ceramic fiber and acicular wollastonite filled silicone rubber composite. Applied Polymer, 1, 39700.
[12]  Xiong, Y.L., Fei, Q.S., et al. (2012) High strength retention and dimensional stability of sili-cone/alumina composite panel under fire. Fire and Materials, 4, 254-263.
[13]  Mansouri, J., Burford, R.P. and Cheng, Y.B. (2006) Pyrolysis behaviour of silicone-based ceramifying composites. Materials Science and Engineering A, 1, 7-14.
[14]  Chua, T.P., Mariatti, M., Azizan, A., et al. (2010) Effect of surface-functionalized multi-walled carbon na-notubes on the properties of poly(dimethyl siloxane) nanocomposites. Composites Science and Technology, 70, 671-677.
[15]  Osman, M., Atallah, A., Muller, M., et al. (2001) Reinforcement of poly(dimethylsiloxane) networks by mica. Polymer, 15, 6545-6556.


comments powered by Disqus