All Title Author
Keywords Abstract

Early Double-Negative Thymocyte Export in Trypanosoma cruzi Infection Is Restricted by Sphingosine Receptors and Associated with Human Chagas Disease

DOI: 10.1371/journal.pntd.0003203

Full-Text   Cite this paper   Add to My Lib


The protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironmental and lymphoid compartments. Acute infection results in severe atrophy of the organ and early release of immature thymocytes into the periphery. To date, the pathophysiological effects of thymic changes promoted by parasite-inducing premature release of thymocytes to the periphery has remained elusive. Herein, we show that sphingosine-1-phosphate (S1P), a potent mediator of T cell chemotaxis, plays a role in the exit of immature double-negative thymocytes in experimental Chagas disease. In thymuses from T. cruzi-infected mice we detected reduced transcription of the S1P kinase 1 and 2 genes related to S1P biosynthesis, together with increased transcription of the SGPL1 sphingosine-1-lyase gene, whose product inactivates S1P. These changes were associated with reduced intrathymic levels of S1P kinase activity. Interestingly, double-negative thymocytes from infected animals expressed high levels of the S1P receptor during infection, and migrated to lower levels of S1P. Moreover, during T. cruzi infection, this thymocyte subset expresses high levels of IL-17 and TNF-α cytokines upon polyclonal stimulation. In vivo treatment with the S1P receptor antagonist FTY720 resulted in recovery the numbers of double-negative thymocytes in infected thymuses to physiological levels. Finally, we showed increased numbers of double-negative T cells in the peripheral blood in severe cardiac forms of human Chagas disease.


[1]  Roca C, Pinazo MJ, Lopez-Chejade P, Bayo J, Posada E, et al. (2011) Chagas disease among the Latin American adult population attending in a primary care center in Barcelona, Spain. PLoS Negl Trop Dis 5: e1135. doi: 10.1371/journal.pntd.0001135
[2]  Morel CM, Lazdins J (2003) Chagas disease. Nat Rev Microbiol 1: 14–15.
[3]  Noireau F, Diosque P, Jansen AM (2009) Trypanosoma cruzi: adaptation to its vectors and its hosts. Vet Res 40: 26. doi: 10.1051/vetres/2009009
[4]  Teixeira AR, Nitz N, Guimaro MC, Gomes C, Santos-Buch CA, et al. (2006) Chagas disease. Postgrad Med J 82: 788–798. doi: 10.1136/pgmj.2006.047357
[5]  Levin MJ (1996) In chronic Chagas heart disease, don't forget the parasite. Parasitol Today 12: 415–416. doi: 10.1016/0169-4758(96)20051-1
[6]  Machado FS, Tyler KM, Brant F, Esper L, Teixeira MM, et al. (2012) Pathogenesis of Chagas disease: time to move on. Front Biosci (Elite Ed) 4: 1743–1758. doi: 10.2741/e495
[7]  Kierszenbaum F (2005) Where do we stand on the autoimmunity hypothesis of Chagas disease? Trends Parasitol 21: 513–516. doi: 10.1016/
[8]  Brener Z, Gazzinelli RT (1997) Immunological control of Trypanosoma cruzi infection and pathogenesis of Chagas' disease. Int Arch Allergy Immunol 114: 103–10. doi: 10.1159/000237653
[9]  Gutierrez FR, Guedes PM, Gazzinelli RT, Silva JS (2009) The role of parasite persistence in pathogenesis of Chagas heart disease. Parasite Immunol 31: 673–85. doi: 10.1111/j.1365-3024.2009.01108.x
[10]  Golgher D, Gazzinelli RT (2004) Innate and acquired immunity in the pathogenesis of Chagas disease. Autoimmunity 37: 399–409. doi: 10.1080/08916930410001713115
[11]  Savino W (2006) The thymus is a common target organ in infectious diseases. PLoS Pathog 2: e62. doi: 10.1371/journal.ppat.0020062
[12]  Morrot A, Terra-Granado E, Perez AR, Silva-Barbosa SD, Milicevic NM, et al. (2011) Chagasic thymic atrophy does not affect negative selection but results in the export of activated CD4+CD8+ T cells in severe forms of human disease. PLoS Negl Trop Dis 5: e1268. doi: 10.1371/journal.pntd.0001268
[13]  Roggero E, Pérez AR, Tamae-Kakazu M, Piazzon I, Nepomnaschy , et al. (2006) Endogenous glucocorticoids cause thymus atrophy but are protective during acute Trypanosoma cruzi infection. J Endocrinol 190: 495–503. doi: 10.1677/joe.1.06642
[14]  Lepletier A, de Frias Carvalho V, e Silva PMR, Villar S, Pérez AR, et al. (2013) Trypanosoma cruzi disrupts thymic homeostasis by altering intrathymic and systemic stress-related endocrine circuitries. PLoS Negl Trop Dis 7: e2470. doi: 10.1371/journal.pntd.0002470
[15]  Lepletier A, de Frias Carvalho V, Morrot A, Savino W, et al. (2012) Thymic atrophy in acute experimental Chagas disease is associated with an imbalance of stress hormones. Ann N Y Acad Sci 1262: 45–50. doi: 10.1111/j.1749-6632.2012.06601.x
[16]  Perez AR, Berbert LR, Lepletier A, Revelli S, Bottasso O, et al. (2012) TNF-alpha is involved in the abnormal thymocyte migration during experimental Trypanosoma cruzi infection and favors the export of immature cells. PLoS One 7: e34360. doi: 10.1371/journal.pone.0034360
[17]  Nardy AF, Luiz da Silva Filho J, Perez AR, de Meis J, Farias-de-Oliveira DA, et al. (2013) Trans-sialidase from Trypanosoma cruzi enhances the adhesion properties and fibronectin-driven migration of thymocytes. Microbes Infect 15: 365–74 doi: 10.1016/j.micinf.2013.02.003.
[18]  de Meis J, Aurélio Farias-de-Oliveira D, Nunes Panzenhagen PH, Maran N, Villa-Verde DM, et al. (2012) Thymus atrophy and double-positive escape are common features in infectious diseases. J Parasitol Res 2012: 574020. doi: 10.1155/2012/574020
[19]  Matsumoto M, Yasukawa M, Inatsuki A, Kobayashi Y (1991) Human double-negative (CD4?CD8?) T cells bearing alpha beta T cell receptor possess both helper and cytotoxic activities. Clin Exp Immunol 85: 525–530. doi: 10.1111/j.1365-2249.1991.tb05761.x
[20]  Cowley SC, Meierovics AI, Frelinger JA, Iwakura Y, Elkins KL (2010) Lung CD4?CD8? double-negative T cells are prominent producers of IL-17A and IFN-gamma during primary respiratory murine infection with Francisella tularensis live vaccine strain. J Immunol 184: 5791–5801. doi: 10.4049/jimmunol.1000362
[21]  Crispin JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, et al. (2008) Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol 181: 8761–8766. doi: 10.4049/jimmunol.181.12.8761
[22]  Mendes-da-Cruz DA, Silva JS, Cotta-de-Almeida V, Savino W (2006) Altered thymocyte migration during experimental acute Trypanosoma cruzi infection: combined role of fibronectin and the chemokines CXCL12 and CCL4. Eur J Immunol 36: 1486–1493.
[23]  Cotta-de-Almeida V, Bonomo A, Mendes-da-Cruz DA, Riederer I, De Meis J, et al. (2003) Trypanosoma cruzi infection modulates intrathymic contents of extracellular matrix ligands and receptors and alters thymocyte migration. Eur J Immunol 33: 2439–2448. doi: 10.1002/eji.200323860
[24]  Allende ML, Dreier JL, Mandala S, Proia RL (2004) Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J Biol Chem 279: 15396–15401. doi: 10.1074/jbc.m314291200
[25]  Love PE, Bhandoola A (2011) Signal integration and crosstalk during thymocyte migration and emigration. Nat Rev Immunol 11: 469–477. doi: 10.1038/nri2989
[26]  Schwab SR, Pereira JP, Matloubian M, Xu Y, Huang Y, et al. (2005) Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309: 1735–1739. doi: 10.1126/science.1113640
[27]  Kluk MJ, Hla T (2002) Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim Biophys Acta 1582: 72–80. doi: 10.1016/s1388-1981(02)00139-7
[28]  Yatomi Y, Ozaki Y, Ohmori T, Igarashi Y (2001) Sphingosine 1-phosphate: synthesis and release. Prostaglandins Other Lipid Mediat 64: 107–122. doi: 10.1016/s0090-6980(01)00103-4
[29]  Hisano Y, Kobayashi N, Yamaguchi A, Nishi T, et al. (2012) Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. PLoS One 7: e38941. doi: 10.1371/journal.pone.0038941
[30]  Van Brocklyn JR, Lee MJ, Menzeleev R, Olivera A, Edsall L, et al. (1998) Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol 142: 229–240. doi: 10.1083/jcb.142.1.229
[31]  Merrill AH, Schmelz EM, Dillehay DL, Spiegel S, Shayman JA, et al. (1997) Sphingolipids–the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 142: 208–225.
[32]  Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, et al. (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427: 355–360. doi: 10.1038/nature02284
[33]  Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, et al. (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277: 21453–21457. doi: 10.1074/jbc.c200176200
[34]  Einicker-Lamas M, Wenceslau LD, Bernardo RR, Nogaroli L, Guilherme A, et al. (2003) Sphingosine-1-phosphate formation activates phosphatidylinositol-4 kinase in basolateral membranes from kidney cells: crosstalk in cell signaling through sphingolipids and phospholipids. J Biochem 134: 529–36. doi: 10.1093/jb/mvg170
[35]  Livak KJ, Schmittgen TD (2012) Analysis of relative gene expression data using real-time quantitative PCR and the 2(?Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[36]  Scollay RG, Butcher EC, Weissman IL (1980) Thymus cell migration. Quantitative aspects of cellular traffic from the thymus to the periphery in mice. Eur J Immunol 10: 210–218. doi: 10.1002/eji.1830100310
[37]  Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30: 69–94. doi: 10.1146/annurev-immunol-020711-075011
[38]  Takuwa Y (2002) Subtype-specific differential regulation of Rho family G proteins and cell migration by the Edg family sphingosine-1-phosphate receptors. Biochim Biophys Acta 1582: 112–120. doi: 10.1016/s1388-1981(02)00145-2
[39]  Farias-de-Oliveira DA, Villa-Verde DM, Nunes Panzenhagen PH, Silva dos Santos D, Berbert LR, et al. (2013) Caspase-8 and caspase-9 mediate thymocyte apoptosis in Trypanosoma cruzi acutely infected mice. J Leukoc Biol 93: 227–234. doi: 10.1189/jlb.1211589
[40]  Borowsky AD, Bandhuvula P, Kumar A, Yoshinaga Y, Nefedov M, et al. (2012) Sphingosine-1-phosphate lyase expression in embryonic and adult murine tissues. J Lipid Res 53: 1920–1931. doi: 10.1194/jlr.m028084
[41]  Anderson G, Takahama Y (2012) Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol 33: 256–263. doi: 10.1016/
[42]  Takahama Y, Saito T, Kawamoto H, Itoi M, Boyd RL, et al. (2009) The Global Thymus Network: past, present and future. Trends Immunol 30: 191–192. doi: 10.1016/
[43]  Langlois S, Gingras D, Beliveau R (2004) Membrane type 1-matrix metalloproteinase (MT1-MMP) cooperates with sphingosine 1-phosphate to induce endothelial cell migration and morphogenic differentiation. Blood 103: 3020–3028. doi: 10.1182/blood-2003-08-2968
[44]  Allende ML, Zhou D, Kalkofen DN, Benhamed S, Tuymetova G, et al. (2008) S1P1 receptor expression regulates emergence of NKT cells in peripheral tissues. FASEB J 22: 307–315. doi: 10.1096/fj.07-9087com
[45]  Means CK, Brown JH (2009) Sphingosine-1-phosphate receptor signalling in the heart. Cardiovasc Res 82: 193–200. doi: 10.1093/cvr/cvp086
[46]  Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4: 397–407. doi: 10.1038/nrm1103
[47]  Bankovich AJ, Shiow LR, Cyster JG (2010) CD69 suppresses sphingosine 1-phosophate receptor-1 (S1P1) function through interaction with membrane helix 4. J Biol Chem 285: 22328–22337.
[48]  Feng C, Woodside KJ, Vance BA, El-Khoury D, Canelles M, et al. (2002) A potential role for CD69 in thymocyte emigration. Int Immunol 14: 535–544.49. doi: 10.1093/intimm/dxf020
[49]  Pham TH, Okada T, Matloubian M, Lo CG, Cyster JG (2008) S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress. Immunity 28: 122–133. doi: 10.1016/j.immuni.2007.11.017
[50]  Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, et al. (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296: 346–349.
[51]  Dominguez MR, Ersching J, Lemos R, Machado AV, Bruna-Romero O, et al. (2012) Re-circulation of lymphocytes mediated by sphingosine-1-phosphate receptor-1 contributes to resistance against experimental infection with the protozoan parasite Trypanosoma cruzi. Vaccine 30: 2882–2891. doi: 10.1016/j.vaccine.2012.02.037
[52]  Priatel JJ, Utting O, Teh HS (2001) TCR/self-antigen interactions drive double-negative T cell peripheral expansion and differentiation into suppressor cells. J Immunol 167: 6188–6194. doi: 10.4049/jimmunol.167.11.6188
[53]  Hillhouse EE, Lesage S (2013) A comprehensive review of the phenotype and function of antigen-specific immunoregulatory double negative T cells. J Autoimmun 40: 58–65. doi: 10.1016/j.jaut.2012.07.010
[54]  Van Laethem F, Sarafova SD, Park JH, Tai X, Pobezinsky L, et al. (2007) Deletion of CD4 and CD8 coreceptors permits generation of alphabetaT cells that recognize antigens independently of the MHC. Immunity 27: 735–750. doi: 10.1016/j.immuni.2007.10.007
[55]  Guy-Grand D, Azogui O, Celli S, Darche S, Nussenzweig MC, et al. (2003) Extrathymic T cell lymphopoiesis: ontogeny and contribution to gut intraepithelial lymphocytes in athymic and euthymic mice. J Exp Med 197: 333–341. doi: 10.1084/jem.20021639
[56]  Reinhardt C, Melms A (2000) Normalization of elevated CD4?/CD8? (double-negative) T cells after thymectomy parallels clinical remission in myasthenia gravis associated with thymic hyperplasia but not thymoma. Ann Neurol 48: 603–608. doi: 10.1002/1531-8249(200010)48:4<603::aid-ana6>;2-t
[57]  Bonney KM, Engman DM (2008) Chagas heart disease pathogenesis: one mechanism or many? Curr Mol Med 8: 510–518. doi: 10.2174/156652408785748004


comments powered by Disqus

Contact Us


微信:OALib Journal