In this study the relation between the
generated open circuit output voltages of the piezoelectric ceramics Cymbal
transducers with applied impact mechanical energy is studied. The output voltages
of piezoelectric ceramics Cymbal transducers are increased with the increasing
of the applied mechanical energy. Under the same impact mechanical energy, the
generated open circuit output voltages of the piezoelectric ceramics Cymbal
transducer is much higher than that of uncapped piezoelectric ceramics disk
alone. The generated open circuit output voltages of the piezoelectric ceramics
Cymbal transducer depend on the geometry parameters and the metal thickness of
end-cap. The generated open circuit voltage of piezoelectric ceramics Cymbal
transducer with thick metal thickness is small than that with thin metal
thickness.
References
[1]
Dogan, A., Uchino, K. and Newnham, R.E. (1997) Composite Piezoelectric Transducer with Truncated Conical Endcaps “Cymbal”. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44, 597-605.
http://dx.doi.org/10.1109/58.658312
[2]
Meyer Jr., R.J., Dogan, A., Yoon, C., Pilgrim, S.M. and Newnham, R.E. (2001) Displacement Amplification of Electroactive Materials Using the Cymbal Flextensional Transducer. Sens. Actuators A, 87, 157-162.
[3]
Meyer Jr., R.J., Hughes, W.J., Montgomery, T.C., Markley, D.C. and Newnham, R.E. (2002) Design of Fabrication Improvements to the Cymbal Transducer Aided by Finite Element Analysis. J. Electro-ceram., 8, 163-174.
[4]
Zhang, J., Hladky-Hennion, A.-C., Hughes, W.J. and Newnham, R.E. (2001) Modeling and Underwater Characterization of Cymbal Transducers and Arrays. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48, 560-568. http://dx.doi.org/10.1109/58.911739
[5]
Li, D.H., Wu, M., Oyang, P.X. and Xu, X.F. (2006) Cymbal Piezoelectric Composite Underwater Acoustic Transducer. Ultrasonics, 44, e685-e687. http://dx.doi.org/10.1016/j.ultras.2006.05.127
[6]
Kim, H.W., Batra, A., Priya, S., Uchino, K., Markley, D., Newnham, R.E. and Hofmann, H.F. (2004) Energy Harvesting Using a Piezoelectric “Cymbal” Transducer in Dynamic Environment. Japanese Journal of Applied Physics, 43, 6178-6183. http://dx.doi.org/10.1143/JJAP.43.6178
[7]
Kim, H.W., Priya, S., Uchino, K. and Newnham, R.E. (2005) Piezoelectric Energy Harvesting under High Pre-Stressed Cyclic Vibrations. Journal of Electroceramics, 15, 27-34. http://dx.doi.org/10.1007/s10832-005-0897-z
[8]
Kim, H.W., Priya, S. and Uchino, K. (2006) Modeling of Piezoelectric Energy Harvesting Using Cymbal Transducers. Japanese Journal of Applied Physics, 45, 5836-5840. http://dx.doi.org/10.1143/JJAP.45.5836
[9]
Kim, H.W., Priya, S., Stephanou, H. and Uchino, K. (2007) Consideration of Impedance Matching Techniques for Efficient Piezoelectric Energy Harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 45, 1851-1859. http://dx.doi.org/10.1109/TUFFC.2007.469
[10]
Li, S.Z., Zheng, L., Li, D., Ai, L., Zhang, Z., Guo, S.S. and Zhao, X.Z. (2011) Study of Energy Harvesting Using Piezoelectric Cymbal Transducers. Material Science Forum, 687, 396-401.
http://dx.doi.org/10.4028/www.scientific.net/MSF.687.396
[11]
Li, X., Guo, M. and Dong, S. (2011) A Flex-Compressive-Mode Piezoelectric Transducer for Mechanical Vibration/ Strain Energy Harvesting. IEEE Transac-tions on Ultrasonics, Ferroelectrics, and Frequency Control, 58, 698-703.
http://dx.doi.org/10.1109/TUFFC.2011.1862
[12]
Palosaari, J., Leinonen, M., Hannu, J., Juati, J. and Jantunen, H. (2012) Energy Harvesting with A Cymbal Type Piezoelectric Transducer from Low Frequency Compression. Journal of Electroceramics, 28, 214-219.
http://dx.doi.org/10.1007/s10832-012-9713-8
[13]
Chure, M.C., Wu, L., Wu, K.K., Tung, C.C., Lin, J.S. and Ma, W.C. (2014) Power Generation Characteristics of PZT Piezoelectric Ceramics Using Drop Weight Impact Techniques: Effect of Dimensional Size. Ceramics International, 40, 341-345. http://dx.doi.org/10.1016/j.ceramint.2013.06.007