All Title Author
Keywords Abstract

Challenges in understanding the impact of blood pressure management on cerebral oxygenation in the preterm brain

DOI: 10.3389/fphys.2012.00471

Keywords: infants, newborn, preterm, hypotension, cerebral oxygenation

Full-Text   Cite this paper   Add to My Lib


Systemic hypotension in preterm infants has been related to increased mortality, cerebrovascular lesions, and neurodevelopmental morbidity. Treatment of hypotension with inotropic medications aims at preservation of end organ perfusion and oxygen delivery, especially the brain. The common inotropic medications in preterm infants include dopamine, dobutamine, adrenaline, with adjunctive use of corticosteroids in cases of refractory hypotension. Whether maintenance of mean arterial blood pressure (MAP) by use of inotropic medication is neuroprotective or not remains unclear. This review explores the different inotropic agents and their effects on perfusion and oxygenation in the preterm brain, in clinical studies as well as in animal models. Dopamine and adrenalin, because of their α-adrenergic vasoconstrictor actions, have raised concerns of reduction in cerebral blood flow (CBF). Several studies in hypotensive preterm infants have shown that dopamine elevates CBF together with increased MAP, in keeping with limited cerebro-autoregulation. Adrenaline is also effective in raising cerebral perfusion together with MAP in preterm infants. Experimental studies in immature animals show no cerebro-vasoconstrictive effects of dopamine or adrenaline, but demonstrate the consistent findings of increased cerebral perfusion and oxygenation with the use of dopamine, dobutamine, and adrenaline, alongside with raised MAP. Both clinical and animal studies report the transitory effects of adrenaline in increasing plasma lactate, and blood glucose, which might render its use as a 2nd line therapy. To investigate the cerebral effects of inotropic agents in long-term outcome in hypotensive preterm infants, carefully designed prospective research possibly including preterm infants with permissive hypotension is required. Preterm animal models would be useful in investigating the relationship between the physiological effects of inotropes and histopathology outcomes in the developing brain.


comments powered by Disqus