All Title Author
Keywords Abstract

Focus Issue on Male Infertility

DOI: 10.1155/2012/823582

Full-Text   Cite this paper   Add to My Lib


Male infertility problems can occur when sperms are limited in number or function. In this paper, we describe the clinical evaluation of male infertility. A detailed history, physical examination, and basic semen analysis are required. In addition, ultrasound, karyotyping, and hormonal studies are needed to determine specific causes of infertility. In addition, the World Health Organization (WHO, 2009) has developed a manual to provide guidance in performing a comprehensive semen analysis. Among the possible reasons for male infertility, nonobstructive azoospermia is the least treatable, because few or no mature sperm may be produced. In many cases, men with nonobstructive azoospermia typically have small-volume testes and elevated FSH. Although treatment may not completely restore the quality of semen from men with subnormal fertility, in some cases a successful pregnancy can still be achieved through assisted reproductive technology. 1. Introduction About 1 in 7 couples have problems conceiving, with a similar incidence worldwide. Over 80% of couples who have regular sexual intercourse and do not use contraception will achieve a pregnancy within one year, and approximately 92% can achieve a pregnancy within 2 years [1]. Infertility affects males and females equally, although many people believe that infertility is a female problem. In Japan, especially, couples oppose insemination or adoption as an alternative to having a child carrying both parents’ genes, which means that males are likely to seek infertility evaluations when a couple has difficulty conceiving. The clinical evaluation of male infertility includes a detailed history, physical examination, laboratory tests, ultrasound study, and karyotyping. The two main purposes of the evaluation are (1) to identify any modifiable factors that can improve the man’s fertility status and (2) to identify any serious underlying conditions, such as testis cancer, osteoporosis, and endocrine or genetic problems that present first as infertility [2]. 2. History-Taking for the Male Infertility Workup The infertility history should include a detailed account of the patient’s reproductive and sexual history, developmental, family, medical, and surgical history. The information to be included in each portion of the history is detailed below. 2.1. Reproductive and Sexual History For the reproductive history, any prior conceptions for the male with present or past partners, details of any prior difficulty achieving conception, past evaluations and treatments for infertility, and previous use of contraception


[1]  B. Robaire and P. Chan, Handbook of Andrology, The American Society of Andrology, 2nd edition, 2010.
[2]  L. I. Lipshultz, L. I. Howards, and C. S. Niederberger, Infertility in the Male, Cambridge University Press, Cambridge, UK, 4th edition, 2009.
[3]  P. A. Lee, “Fertility after cryptorchidism: epidemiology and other outcome studies,” Urology, vol. 66, no. 2, pp. 427–431, 2005.
[4]  P. A. Lee, “Fertility in cryptorchidism: does treatment make a difference?” Endocrinology and Metabolism Clinics of North America, vol. 22, no. 3, pp. 479–490, 1993.
[5]  M. Grasso, A. Buonaguidi, C. Lania, F. Bergamaschi, M. Castelli, and P. Rigatti, “Postpubertal cryptorchidism: review and evaluation of the fertility,” European Urology, vol. 20, no. 2, pp. 126–128, 1991.
[6]  A. Okuyama, N. Nonomura, M. Nakamura et al., “Surgical management of undescenced testis: retrospective study of potential fertility in 274 cases,” Journal of Urology, vol. 142, no. 3, pp. 749–751, 1989.
[7]  J. B. Anderson and R. C. N. Williamson, “The fate of the human testes following unilateral torsion of the spermatic cord,” British Journal of Urology, vol. 58, no. 6, pp. 698–704, 1986.
[8]  J. B. Anderson and R. C. N. Williamson, “Fertility after torsion of the spermatic cord,” British Journal of Urology, vol. 65, no. 3, pp. 225–230, 1990.
[9]  G. Bartsch, S. Frank, H. Marberger, and G. Mikuz, “Testicular torsion: late results with special regard to fertility and endocrine function,” Journal of Urology, vol. 124, no. 3, pp. 375–378, 1980.
[10]  F. Dondero, A. Lenzi, M. Picardo, R. Pastore, and G. Valesini, “Cell-mediated antisperm immunity in selected forms of male infertility,” Andrologia, vol. 12, no. 1, pp. 25–29, 1980.
[11]  I. Fraser, N. Slater, C. Tate, and J. G. Smart, “Testicular torsion does not cause autoimmunization in man,” British Journal of Surgery, vol. 72, no. 3, pp. 237–238, 1985.
[12]  I. Mastrogiacomo, R. Zanchetta, P. Graziotti, C. Betterle, P. Scrufari, and A. Lembo, “Immunological and clinical study in patients after spermatic cord torsion,” Andrologia, vol. 14, no. 1, pp. 25–30, 1982.
[13]  P. Puri, D. Barton, and B. O'Donnell, “Prepubertal testicular torsion: subsequent fertility,” Journal of Pediatric Surgery, vol. 20, no. 6, pp. 598–601, 1985.
[14]  W. E. G. Thomas, M. J. Cooper, and G. A. Crane, “Testicular exocrine malfunction after torsion,” The Lancet, vol. 2, no. 8416, pp. 1357–1360, 1984.
[15]  P. Hagen, M. M. Buchholz, J. Eigenmann, and K. Bandhauer, “Testicular dysplasia causing disturbance of spermiogenesis in patients with unilateral torsion of the testis,” Urologia Internationalis, vol. 49, no. 3, pp. 154–157, 1992.
[16]  M. J. Anderson, J. K. Dunn, L. I. Lipshultz, and M. Coburn, “Semen quality and endocrine parameters after acute testicular torsion,” Journal of Urology, vol. 147, no. 6, pp. 1545–1550, 1992.
[17]  C. A. Werner, “Mumps orchitis and testicular atrophy; a factor in male sterility,” Annals of Internal Medicine, vol. 32, no. 6, pp. 1075–1086, 1950.
[18]  L. F. Greene and P. P. Kelalis, “Retrograde ejaculation of semen dueto diabetic neuropathy,” Journal of Urology, vol. 98, no. 6, p. 696, 1967.
[19]  W. Weidner, W. Krause, and M. Ludwig, “Relevance of male accessory gland infection for subsequent fertility with special focus on prostatitis,” Human Reproduction Update, vol. 5, no. 5, pp. 421–432, 1999.
[20]  L. J. Wilton, H. Teichtahl, P. D. Temple-Smith, and D. M. de Kretser, “Kartagener's syndrome with motile cilia and immotile spermatozoa: axonemal ultrastructure and function,” American Review of Respiratory Disease, vol. 134, no. 6, pp. 1233–1236, 1986.
[21]  L. J. Wilton, H. Teichtahl, P. D. Temple-Smith et al., “Young's syndrome (obstructive azoospermia and chronic sinobronchial infection): a quantitative study of axonemal ultrastructure and function,” Fertility and Sterility, vol. 55, no. 1, pp. 144–151, 1991.
[22]  P. R. Carroll, W. F. Whitmore Jr., H. W. Herr, et al., “Endocrine and exocrine profiles of men with testicular tumors before orchiectomy,” Journal of Urology, vol. 137, no. 3, pp. 420–423, 1987.
[23]  L. Dubin and R. D. Amelar, “Sexual causes of male infertility,” Fertility and Sterility, vol. 23, no. 8, pp. 579–582, 1972.
[24]  S. P. Boyers, M. D. Corrales, G. Huszar, and A. H. DeCherney, “The effects of Lubrin on sperm motility in vitro,” Fertility and Sterility, vol. 47, no. 5, pp. 882–884, 1987.
[25]  D. A. Ohl and J. Sonksen, “What are the chances of infertility and should sperm be banked?” Seminars in Urologic Oncology, vol. 14, no. 1, pp. 36–44, 1996.
[26]  L. I. Lipshultz, C. E. Ross, D. Whorton, T. Milby, R. Smith, and R. E. Joyner, “Dibromochloropropane and its effect on testicular function in man,” Journal of Urology, vol. 124, no. 4, pp. 464–468, 1980.
[27]  R. de Celis, A. Feria-Velasco, M. González-Unzaga, J. Torres-Calleja, and N. Pedrón-Nuevo, “Semen quality of workers occupationally exposed to hydrocarbons,” Fertility and Sterility, vol. 73, no. 2, pp. 221–228, 2000.
[28]  Y. Kim, J. Park, and Y. Moon, “Hematopoietic and reproductive toxicity of 2-bromopropane, a recently introduced substitute for chlorofluorocarbons,” Toxicology Letters, vol. 108, no. 2-3, pp. 309–313, 1999.
[29]  I. Lancranjan, H. I. Popescu, O. GAvǎnescu, I. Klepsch, and M. Serbǎnescu, “Reproductive ability of workmen occupationally exposed to lead,” Archives of Environmental Health, vol. 30, no. 8, pp. 396–401, 1975.
[30]  S. Tali?man, P. Cvitkovi?, J. Jurasovi?, A. Pizent, M. Gavella, and B. Ro?i?, “Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men,” Environmental Health Perspectives, vol. 108, no. 1, pp. 45–53, 2000.
[31]  A. Toth, “Reversible toxic effect of salicylazosulfapyridine on semen quality,” Fertility and Sterility, vol. 31, no. 5, pp. 538–540, 1979.
[32]  D. H. van Thiel, J. S. Gavaler, W. I. Smith Jr., and G. Paul, “Hypothalamic-pituitary-gonadal dysfunction in men using cimetidine,” The New England Journal of Medicine, vol. 300, no. 18, pp. 1012–1015, 1979.
[33]  K. M. Curtis, D. A. Savitz, and T. E. Arbuckle, “Effects of cigarette smoking, caffeine consumption, and alcohol intake on fecundability,” American Journal of Epidemiology, vol. 146, no. 1, pp. 32–41, 1997.
[34]  B. C. Dunphy, C. L. R. Barratt, and I. D. Cooke, “Male alcohol consumption and fecundity in couples attending an infertility clinic,” Andrologia, vol. 23, no. 3, pp. 219–221, 1991.
[35]  H. J. M. Goverde, H. S. Dekker, H. J. G. Janssen, B. A. Bastiaans, R. Rolland, and G. A. Zielhuis, “Semen quality and frequency of smoking and alcohol consumption—an explorative study,” International Journal of Fertility and Menopausal Studies, vol. 40, no. 3, pp. 135–138, 1995.
[36]  J. Olsen, F. Bolumar, J. Boldsen, and L. Bisanti, “Does moderate alcohol intake reduce fecundability? A European multicenter study on infertility and subfecundity. European Study Group on Infertility and Subfecundity,” Alcoholism: Clinical and Experimental Research, vol. 21, no. 2, pp. 206–212, 1997.
[37]  M. F. Vine, C. K. J. Tse, P. C. Hu, and K. Y. Truong, “Cigarette smoking and semen quality,” Fertility and Sterility, vol. 65, no. 4, pp. 835–842, 1996.
[38]  C. E. Close, P. L. Roberts, and R. E. Berger, “Cigarettes, alcohol and marijuana are related to pyospermia in infertile men,” Journal of Urology, vol. 144, no. 4, pp. 900–903, 1990.
[39]  S. E. Chia, S. T. A. Lim, S. K. Tay, and S. T. Lim, “Factors associated with male infertility: a case-control study of 218 infertile and 240 fertile men,” British Journal of Obstetrics and Gynaecology, vol. 107, no. 1, pp. 55–61, 2000.
[40]  R. K. Dikshit, J. G. Buch, and S. M. Mansuri, “Effect of tobacco consumption on semen quality of a population of hypofertile males,” Fertility and Sterility, vol. 48, no. 2, pp. 334–336, 1987.
[41]  H. J. Evans, J. Fletcher, M. Torrance, and T. B. Hargreave, “Sperm abnormalities and cigarette smoking,” The Lancet, vol. 1, no. 8221, pp. 627–629, 1981.
[42]  P. B. Marshburn, C. S. Sloan, and M. G. Hammond, “Semen quality and association with coffee drinking, cigarette smoking, and ethanol consumption,” Fertility and Sterility, vol. 52, no. 1, pp. 162–165, 1989.
[43]  S. Osser, A. Beckman-Ramirez, and P. Liedholm, “Semen quality of smoking and non-smoking men in infertile couples in a Swedish population,” Acta Obstetricia et Gynecologica Scandinavica, vol. 71, no. 3, pp. 215–218, 1992.
[44]  L. I. Lipshultz and J. N. Corriere Jr., “Progressive testicular atrophy in the varicocele patient,” Journal of Urology, vol. 117, no. 2, pp. 175–176, 1977.
[45]  C. W. Charny, “The spermatogenic potential of the undescended testis before and after treatment,” Journal of Urology, vol. 83, pp. 697–705, 1960.
[46]  S. Gunalp, C. Onculoglu, T. Gurgan, T. F. Kruger, and C. J. Lombard, “A study of semen parameters with emphasis on sperm morphology in a fertile population: an attempt to develop clinical thresholds,” Human Reproduction, vol. 16, no. 1, pp. 110–114, 2001.
[47]  World Health Organization, Laboratory Manual for the Examination of Human Semen, World Health Organization, Geneva, Switzerland, 5th edition, 2009.
[48]  M. Sigman and J. P. Jarow, “Endocrine evaluation of infertile men,” Urology, vol. 50, no. 5, pp. 659–664, 1997.


comments powered by Disqus