In this article we show that quantum physics is a straightforward and
comprehensive consequence of the model of discrete space-time that we have put
forward in [1]. We first introduce the concept of coherent
domains and give a proof of the various postulates and principles that form the
basis of one-particle quantum systems. Then we consider how spin-statistic
theorem and the formalism of second quantization, that are prerequisites for a
description of many-particles systems, emerge from the model. Finally the same
framework suggests the idea of rigid histories which allows an interpretation
of quantum entanglement to be proposed.
References
[1]
Peretto, P. (2014) Journal of Modern Physics, 5, 563-575. http://dx.doi.org/10.4236/jmp.2014.58067
Zurek, W.H. (2003) Reviews of Modern Physics, 75, 715. http://dx.doi.org/10.1103/RevModPhys.75.715
[4]
Hamermesh, M. (1962) Group Theory and It’s Applications to Physical Problems. Addison Weysley, Boston.
[5]
Serre, J.P. (1998) Representations Lineaires des Groupes Finis. Hermann Paris.
[6]
Rovelli, C. (2012) Et si le temps n’existait pas? Dunod Paris.
[7]
Aspect, A., Grangier, P. and Roger, G. (1982) Physical Review Letters, 49, 91. http://dx.doi.org/10.1103/PhysRevLett.49.91
[8]
Einstein, A., Podolsky, B. and Rosen, N. (1935) Physical Review Letters, 47, 777. http://dx.doi.org/10.1103/PhysRev.47.777
[9]
Zeilinger, A., Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., et al. (2007) Nature Physics, 3, 481. http://dx.doi.org/10.1038/nphys629
[10]
Peretto, P. (1992) An Introduction to the Modelling of Neural Networks. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511622793