All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

Hornfels feature in the Jiama ore deposit, Tibet and its significance on deep prospecting
西藏甲玛矿区角岩特征及其对深部找矿的意义

Application of Audio-Magnetotelluric Method for Exploration the Concealed Ore-Bodies in Yuele Lead-Zinc Ore Feild, Daguan County, NE Yunnan Province, China

Geological Characteristics and Ore-Prospecting Criteria of the Ulandler Porphyry Molybdenum Deposit in Sonid Left Banner, Inner Mongolia
内蒙古苏尼特左旗乌兰德勒钼(铜)矿床地质特征及找矿标志

The Genesis of Mineralized Tuff of No. I Ore Body in the Xiongcun Porphyry Copper-Gold Metallogenic Ore District, Tibet: Evidence from Geochemistry and Sr-Nd-Pb Isotopes
西藏雄村铜金矿Ⅰ号矿体赋矿凝灰岩成因探讨:来自岩石地球化学、Sr-Nd-Pb同位素地球化学特征的证据

Characteristics of Primary Halos and Prognosis of Concealed Ore Bodies in the Hongshi Gold Deposit, Xinjiang
新疆红石金矿床原生晕特征与隐伏矿预测

Zircon SHRIMP U-Pb dating and its geological significance of Lujiacun quartz-monzonite porphyry in Shangri-la County, northwestern Yunnan Province, China
滇西北中甸陆家村石英二长斑岩的锆石SHRIMP定年及其意义

Ro ňava ore field - geophysical works

A Study of the Ore-forming Fluid in the Lengshuikeng Ag-Pb-Zn Porphyry Deposit
冷水坑斑岩型银铅锌矿床成矿流体特征研究

Comparison on elemental and isotopic geochemistry of ore-bearing and barren porphyries from the Yulong porphyry Cu deposit, east Tibet.
玉龙斑岩铜矿含矿与非含矿斑岩元素和同位素地球化学对比研究

Geochemical haloes of Gold in the Lece ore field - southern Serbia

More...

Magnetic Method Surveying and Its Application for the Concealed Ore-Bodies Prospecting of Laba Porphyry Molybdenum Ore Field in Shangri-La, Northwestern Yunnan Province, China

DOI: 10.4236/gep.2014.23006, PP. 46-53

Keywords: Magnetic Method, Physical Property Parameters, Concealed Ore-Bodies Prospecting, Laba Porphyry Molybdenum (-Copper) Ore Field, Northwestern Yunnan Province

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recently, a number of large molybdenum (-copper) deposits have been discovered successively in the Laba area, Shangri-La county, northwestern Yunnan province. The investigation confirmed that there is a superlarge porphyry-skarn hydrothermal vein type molybdenum-polymetallic- metallogenic system with the total prediction reservoir of more than 150 mt molybdenum. The porphyry intrusions contributed to the mineralization closely, the superficial little vein molybdenum (-copper, lead, silver) ore-bodies are usually located in faults and fractures, and the deep porphyry type ore-bodies occurred in the granodiorite porphyries, the skarn type ore-bodies occurred in the contact zone intrused into Triassic limestone or Permian basalts. Laba ore block is a new exploration area with great prospecting potential. In order to reduce the target area and guide the further exploration work, the magnetic method measurement about 3.3 square kilometres was carried out in the ore field. This paper presents an application of analyzing the horizontal and vertical derivative, using Fast Fourier Transform (FFT) filter (FFT high-pass, low-pass, cosine roll-off, suscepbility), calculated spectra frequency energy to predict the depth and intensity of the apparent remanence magnetization of source (Hilbert). The calculated results and magnetic anomalous show that the remanence anomaly is caused by the intrusions into the Triassic limestone and Permian basalts with small anomalies, and the depth of located source is not great. We have identified a number of positions to the three drilled well, the drilled result specify interpretation with very high accuracy. The magnetic method is helpful to identify porphyry mineralization, and judge the shape and depth of the concealed ore-bearing intrusive bodies under the similar geological condition.

References

[1]  Alanna, C. D., & Yára, R. M. (2009). Gravity and Magnetic 3D Inversion of Morro do Engenho Complex, Central Brazil. Journal of South American Earth Sciences, 28, 193-203. http://dx.doi.org/10.1016/j.jsames.2009.02.006
[2]  Eun-Jung, H., Shih, C., Peter, K., Michael, D., Barry, B., & Matthew, H. (2011). Automatic Identification of Responses from Porphyry Intrusive Systems within Magnetic Data Using Image Analysis. Journal of Applied Geophysics, 74, 255-262. http://dx.doi.org/10.1016/j.jappgeo.2011.06.016
[3]  Fabio, C. T. (2012). Rapid Interactive Modeling of 3D Magnetic Anomalies. Computers & Geosciences, 48, 308-315. http://dx.doi.org/10.1016/j.cageo.2012.01.006
[4]  Wang, G. W., Zhu, Y. Y., Zhang, S. T., Yan, C. H., Song, Y. W., Ma, Z. B., Hong, D. M., & Chen, T. Z. (2012). 3D Geological Modeling Based on Gravitational and Magnetic Data Inversion in the Luanchuan Ore Region, Henan Province, China. Journal of Applied Geophysics, 80, 1-11. http://dx.doi.org/10.1016/j.jappgeo.2012.01.006
[5]  Hou, Z. Q., Yang, Y. Q., Wang, H. P. et al. (2003). Colli-sion-Orogenic and Mineralization Systems of the Yidun Arc Orogen in Sanjiang Region, China. Beijing: Geological Publishing House, 156-160. (in Chinese with English abstract)
[6]  Ilya, P., & Ahmed, S. (2009). Gravity and Magnetic Data Inversion for 3D Topography of the Moho Discontinuity in the Northern Red Sea Area, Egypt. Journal of Geodynamics, 47, 237-245. http://dx.doi.org/10.1016/j.jog.2008.12.001
[7]  Li, W. C., Yu, H. J., Yin, G. H., Cao, X. M., Huang, D. Z., & Dong, T. (2012). Re-Os Dating of Molybdenite from Tongchanggou Mo-Polymetallic Deposit in Northwest Yunnan and Its Metallogenic Environment. Mineral Deposits, 31, 282- 292. (in Chinese with English abstract)
[8]  Maysam, A., Ali, G., Gholam-Hossain, N., & Nader, F. (2013). Fast Inversion of Magnetic Data Using Lanczosbidiagonalization Method. Journal of Applied Geophysics, 90, 126-137. http://dx.doi.org/10.1016/j.jappgeo.2013.01.008
[9]  Pejman, S., Michel, C., & Denis, M. (2011). 3D Stochastic Inversion of MAGNETIC Data. Journal of Applied Geophysics, 73, 336-347. http://dx.doi.org/10.1016/j.jappgeo.2011.02.005
[10]  Peng, H. J., Mao, J. W., Pei, R. F., Zhang, C. Q., Tian, G., Zhou, Y. M., Li, J. X., & Hou, L. (2014). Geochronology of the Hongniu-Hongshan Porphyry and Skarn Cu Deposit, Northwestern Yunnan Province, China: Implications for Mineralization of the Zhongdian Arc. Journal of Asian Earth Sciences, 79, 682-695. http://dx.doi.org/10.1016/j.jseaes.2013.07.008
[11]  Stocco, S., Godio, A., & Sambuelli, L. (2009). Modelling and Compact Inversion of Magnetic Data: A Matlab Code. Computers & Geosciences, 35, 2111-2118. http://dx.doi.org/10.1016/j.cageo.2009.04.002
[12]  Vanessa, B. R., Vinicius, H. A. L., & Marta, S. M. M. (2013). 3D In-version of Magnetic Data of Grouped Anomalies— Study Applied to S?o José Intrusions in MatoGrosso, Brazil. Journal of Applied Geophysics, 93, 67-76. http://dx.doi.org/10.1016/j.jappgeo.2013.03.013
[13]  Yang, Y. S., Li, Y. Y., Liu, T. Y., Zhan, Y. L., & Feng, J. (2011). Interactive 3D forward Modeling of Total Field Surface and Three-Component Borehole Magnetic Data for the Daye Iron-Ore Deposit (Central China). Journal of Applied Geophysics, 75, 254-263. http://dx.doi.org/10.1016/j.jappgeo.2011.07.010
[14]  Alanna, C. D., & Yára, R. M. (2009). Gravity and Magnetic 3D Inversion of Morro do Engenho Complex, Central Brazil. Journal of South American Earth Sciences, 28, 193-203. http://dx.doi.org/10.1016/j.jsames.2009.02.006
[15]  Eun-Jung, H., Shih, C., Peter, K., Michael, D., Barry, B., & Matthew, H. (2011). Automatic Identification of Responses from Porphyry Intrusive Systems within Magnetic Data Using Image Analysis. Journal of Applied Geophysics, 74, 255-262. http://dx.doi.org/10.1016/j.jappgeo.2011.06.016
[16]  Fabio, C. T. (2012). Rapid Interactive Modeling of 3D Magnetic Anomalies. Computers & Geosciences, 48, 308-315. http://dx.doi.org/10.1016/j.cageo.2012.01.006
[17]  Wang, G. W., Zhu, Y. Y., Zhang, S. T., Yan, C. H., Song, Y. W., Ma, Z. B., Hong, D. M., & Chen, T. Z. (2012). 3D Geological Modeling Based on Gravitational and Magnetic Data Inversion in the Luanchuan Ore Region, Henan Province, China. Journal of Applied Geophysics, 80, 1-11. http://dx.doi.org/10.1016/j.jappgeo.2012.01.006
[18]  Hou, Z. Q., Yang, Y. Q., Wang, H. P. et al. (2003). Colli-sion-Orogenic and Mineralization Systems of the Yidun Arc Orogen in Sanjiang Region, China. Beijing: Geological Publishing House, 156-160. (in Chinese with English abstract)
[19]  Ilya, P., & Ahmed, S. (2009). Gravity and Magnetic Data Inversion for 3D Topography of the Moho Discontinuity in the Northern Red Sea Area, Egypt. Journal of Geodynamics, 47, 237-245. http://dx.doi.org/10.1016/j.jog.2008.12.001
[20]  Li, W. C., Yu, H. J., Yin, G. H., Cao, X. M., Huang, D. Z., & Dong, T. (2012). Re-Os Dating of Molybdenite from Tongchanggou Mo-Polymetallic Deposit in Northwest Yunnan and Its Metallogenic Environment. Mineral Deposits, 31, 282- 292. (in Chinese with English abstract)
[21]  Maysam, A., Ali, G., Gholam-Hossain, N., & Nader, F. (2013). Fast Inversion of Magnetic Data Using Lanczosbidiagonalization Method. Journal of Applied Geophysics, 90, 126-137. http://dx.doi.org/10.1016/j.jappgeo.2013.01.008
[22]  Pejman, S., Michel, C., & Denis, M. (2011). 3D Stochastic Inversion of MAGNETIC Data. Journal of Applied Geophysics, 73, 336-347. http://dx.doi.org/10.1016/j.jappgeo.2011.02.005
[23]  Peng, H. J., Mao, J. W., Pei, R. F., Zhang, C. Q., Tian, G., Zhou, Y. M., Li, J. X., & Hou, L. (2014). Geochronology of the Hongniu-Hongshan Porphyry and Skarn Cu Deposit, Northwestern Yunnan Province, China: Implications for Mineralization of the Zhongdian Arc. Journal of Asian Earth Sciences, 79, 682-695. http://dx.doi.org/10.1016/j.jseaes.2013.07.008
[24]  Stocco, S., Godio, A., & Sambuelli, L. (2009). Modelling and Compact Inversion of Magnetic Data: A Matlab Code. Computers & Geosciences, 35, 2111-2118. http://dx.doi.org/10.1016/j.cageo.2009.04.002
[25]  Vanessa, B. R., Vinicius, H. A. L., & Marta, S. M. M. (2013). 3D In-version of Magnetic Data of Grouped Anomalies— Study Applied to S?o José Intrusions in MatoGrosso, Brazil. Journal of Applied Geophysics, 93, 67-76. http://dx.doi.org/10.1016/j.jappgeo.2013.03.013
[26]  Yang, Y. S., Li, Y. Y., Liu, T. Y., Zhan, Y. L., & Feng, J. (2011). Interactive 3D forward Modeling of Total Field Surface and Three-Component Borehole Magnetic Data for the Daye Iron-Ore Deposit (Central China). Journal of Applied Geophysics, 75, 254-263. http://dx.doi.org/10.1016/j.jappgeo.2011.07.010

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal