All Title Author
Keywords Abstract

Characterization and Utilization of Starches Extracted from Florencia and Waxy Maize Hybrids for Tablet Formulation: Compaction Behaviour and Tablet Properties

DOI: 10.4236/ajps.2014.56093, PP. 787-798

Keywords: Maize Starch, Micromeritics, X-Ray Diffraction, Compression Behaviour, Tablets

Full-Text   Cite this paper   Add to My Lib


The aim of this work is to analyze the particle characteristics, such as shape, roundness and size, of starches extracted from Florencia and waxy maize hybrids. The micromeritics and structural properties of the samples were examined. The evaluation of flow properties, densification and compression behaviour of the powders was carried out. Physical parameters and swelling characteristics of tablets containing Florencia and waxy maize starch were also studied. Starch samples were compared with respect to their applicability as excipients in tablet formulation. The samples exhibited identical structure and similar particle characteristics. Maize starch extracted from the Florencia dent hybrid showed better flowability and compressibility in tableting experiments, which resulted in better mechanical tablet properties. With regard to utilization as a disintegrant, Florencia starch indicated rapid and intensive swelling and proved to act more effectively in the swelling process than waxy maize starch.


[1]  Parker, R. and Ring, S.G. (2001) Aspects of the Physical Chemistry of Starch. Journal of Cereal Science, 34, 1-17.
[2]  Ellis, R.P., Cochrane, M.P., Dale, M.F.B., Duffus, C.M., Lynn, A., Morrison, I.M., Prentice, R.D.M., Swanston, J.S. and Tiller, S.A. (1998) Starch Production and Industrial Use. Journal of the Science of Food and Agriculture, 77, 289-311.<289::AID-JSFA38>3.0.CO;2-D
[3]  Puchongkavarin, H., Bergthaller, W., Shobsngob, S. and Varavinit, S. (2003) Characterization and Utilization of Acid-Modified Rice Starches for Use in Pharmaceutical Tablet Compression. Starch/Stärke, 55, 464-475.
[4]  Zobel, H.F. (1988) Molecules and Granules: A Comprehensive Starch Review. Starch/Stärke, 40, 44-50.
[5]  Takeda, Y., Shitaozono, T. and Hizukuri, S. (1988) Molecular Structure of Corn Starch. Starch/Stärke, 40, 51-54.
[6]  Buléon, A., Colonna, P., Planchot, V. and Ball, S. (1998) Starch Granules: Structure and Biosynthesis. International Journal of Biological Macromolecules, 23, 85-112.
[7]  Tamaki, S., Hisamatsu, M., Teraishi, K., Adachi, T. and Yamada, T. (1998) Structural Change of Maize Starch Granules by Ball-Mill Treatment. Starch/Stärke, 50, 342-348.
[8]  Cheetham, N.W.H. and Tao, L. (1998) Variation in Crystalline Type with Amylose Content in Maize Starch Granules: An X-Ray Powder Diffraction Study. Carbohydrate Polymers, 36, 277-284.
[9]  Van Soest, J.J.G., De Wit, D. and Vliegenthart, J.F.G. (1996) Mechanical Properties of Thermoplastic Waxy Maize Starch. Journal of Applied Polymer Science, 61, 1927-1937.<1927::AID-APP7>3.0.CO;2-L
[10]  Willett, J.L., Millard, M.M. and Jasberg, B.K. (1997) Extrusion of Waxy Maize Starch: Melt Rheology and Molecular Weight Degradation of Amylopectin. Polymer, 38, 5983-5989.
[11]  Riley, C.K., Adebayo, S.A., Wheatley, A.O. and Asemota, H.N. (2006) Fundamental and Derived Properties of Yam (Dioscorea Spp.) Starch Powders and Implications in Tablet and Capsule Formulation. Starch/Stärke, 58, 418-424.
[12]  Rahmouni, M., Lenaerts, V., Massuelle, D., Doelker, E. and Leroux, J.-C. (2002) Influence of Physical Parameters and Lubricants on the Compaction Properties of Granulated and Non-Granulated Cross-Linked High Amylose Starch. Chemical and Pharmaceutical Bulletin, 50, 1155-1162.
[13]  Atichokudomchai, N., Shobsngob, S., Chinachoti, P. and Varavinit, S. (2001) A Study of Some Physicochemical Properties of High-Crystalline Tapioca Starch. Starch/Stärke, 53, 577-581.<577::AID-STAR577>3.0.CO;2-0
[14]  Szepes, A., Hasznos-Nezdei, M., Kovács, J., Funke, Z., Ulrich, J. and Szabó-Révész, P. (2005) Microwave Processing of Natural Biopolymers—Studies on the Properties of Different Starches. International Journal of Pharmaceutics, 302, 166-171.
[15]  Szepes, A., Mohnicke, M. and Szabó-Révész, P. (2007) Water Sorption Behavior and Swelling Characteristics of Starches Subjected to Dielectric Heating. Pharmaceutical Development and Technology, 12, 555-561.
[16]  Szepes, A., Makai, Zs., Blümer, C., Mäder, K., Kása Jr., P. and Szabó-Révész, P. (2008) Characterization and Drug Delivery Behaviour of Starch-Based Hydrogels Prepared via Isostatic Ultrahigh Pressure. Carbohydrate Polymers, 72, 571-578.
[17]  Park, I.-M., Ibanez, A.M., Zhong, F. and Shoemaker, C.F. (2007) Gelatinization and Pasting Properties of Waxy and Non-Waxy Rice Starches. Starch/Stärke, 59, 388-396.
[18]  Yoon, H.-S., Kweon, D.-K. and Lim, S.-T. (2007) Effects of Drying Process for Amorphous Waxy Maize Starch on Theophylline Release from Starch-Based Tablets. Journal of Applied Polymer Science, 105, 1908-1913.
[19]  Callens, C., Adriaens, E., Dierckens, K. and Remon, J.P. (2001) Toxicological Evaluation of a Bioadhesive Nasal Powder Containing a Starch and Carbopol® 974 P on Rabbit Nasal Mucosa and Slug Mucosa. Journal of Controlled Release, 76, 81-91.
[20]  Ceulemans, J., Vermeire, A., Adriaens, E., Remon, J.P. and Ludwig, A. (2001) Evaluation of a Mucoadhesive Tablet for Ocular Use. Journal of Controlled Release, 7, 333-344.
[21]  Ferrari, F., Rossi, S., Martini, A., Muggetti, L., De Ponti, R. and Caramella, C. (1997) Technological Induction of Mucoadhesive Properties on Waxy Starches by Grinding. European Journal of Pharmaceutical Sciences, 5, 277-285.
[22]  Voca, N., Kricka, T., Janusic, V. and Matin, A. (2007) Bioethanol Production from Corn Kernel Grown with Different Cropping Intensities. Cereal Research Communications, 35, 1309-1312.
[23]  Pap, R., Neményi, M. and Kovács A.J. (2004) Examination of Starch of Different Corn Hybrids Extracted by Wet Milling Procedure, and Their Evaluation According to Their Appropriateness for Biopolymer Production. Presentation at ASAE/CSAE Annual International Meeting, Ottawa, Ontario, Canada,
[24]  Szabó-Révész, P., Hasznos-Nezdei, M., Farkas, B., Goczo, H., Pintye-Hódi, K. and Eros, I. (2002) Crystal Growth of Drug Materials by Spherical Crystallization. Journal of Crystal Growth, 237-239, 2240-2245.
[25]  Brunauer, S., Emmett, P.H. and Teller, E. (1938) Adsorption of Gases in Multimolecular Layers. Journal of American Chemical Society, 60, 309-319.
[26]  Barrett, E.P., Joyner, L.G. and Halenda, P.P. (1951) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of American Chemical Society, 73, 373-380.
[27]  Tüske, Zs., Regdon Jr., G., Eros, I., Srcic, S. and Pintye-Hódi, K. (2005) The Role of the Surface Free Energy in the Selection of a Suitable Excipient in the Course of a Wet-Granulation Method. Powder Technology, 155, 139-144.
[28]  Carr, R.L. (1965) Evaluating Flow Properties of Solids. Chemical Engineering, 72, 69.
[29]  Wells, J.I. (1988) Pharmaceutical Preformulation. In: Rubinstein, M.M., Ed., Physicochemical Properties of Drug Substances, Ellis Horwood Limited, Chinchester, UK, 209-214.
[30]  Stamm, A. and Mathis, C. (1976) Verpressbarkeit von Festen Hilfsstoffen für Direkttablettierung. Acta Pharmaceutica Technologica, Suppl. 1, 7-16.
[31]  Bajdik, J., Pintye-Hódi, K., Novák, Cs., Kelemen, A., Regdon Jr., G. and Eros, I. (2002) Indirect Methods for Determination of the Protective Effects of Coating Films on the Surface of crystals. Journal of Thermal Analysis and Camlorimetry, 68, 1572-8943.
[32]  Emschermann, B. and Müller, F. (1981) Auswertung der Kraftmessung beim Tablettieren. Pharmazeutische Industrie, 43, 191-194.
[33]  Siaan, M., Pintye-Hódi, K., Szabó-Révész, P., Kása Jr., P. and Eros, I. (2000) Influence of Avicel PH-301 on the Compressibility of α-Methyldopa and Phenobarbitone in Direct Compression. Drug Development and Industrial Pharmacy, 26, 1013-1018.
[34]  Armstrong, N.A. and Haines-Nutt, R.F. (1974) Elastic Recovery and Surface Area Changes in Compacted Powder Systems. Powder Technology, 9, 287-290.
[35]  Hódi, K., Révész, P. and Miseta, M. (1992) Measurement of the Swelling Pressure and Its Significance in Producing Tablets. Gyógyszerészet, 36, 623-627.
[36]  Langenbucher, F. (1972) Linearization of Dissolution Rate Curves by Weibull Distribution. Journal of Pharmacy and Pharmacology, 24, 979-981.
[37]  Bos, C.E., Bolhuis, G.K., van Doorne, H. and Lerk, C.F. (1987) Native Starch in Tablet Formulations: Properties on Compaction. Pharmaceutisch Weekblad Scientific Edition, 9, 274-282.
[38]  Szabó-Révész, P., Pintye-Hódi, K., Miseta, M. and Selmeczi, B. (1988) Microcrystal Cellulose Prepared Tablets Examination Part l: The Desintegration and Increase Hardness Effect of Avicel PH 101. Pharmazeutische Industrie, 50, 981-983.
[39]  Podczeck, F. and Révész, P. (1993) Evaluation of the Properties of Microcrystalline and Microfine Cellulose Powders. International Journal of Pharmaceutics, 91, 183-193.


comments powered by Disqus