All Title Author
Keywords Abstract

Slider Posture Effects on Air Bearing in a Heat-Assisted Magnetic Recording System

DOI: 10.1155/2012/169207

Full-Text   Cite this paper   Add to My Lib


This paper reports the effects of slider posture on the slider bearing in a heat-assisted magnetic recording (HAMR) system with the direct simulation Monte Carlo (DSMC) method. In this HAMR system, the heat issues on the slider bearings are assumed to be caused by a heated spot on the disk and/or slider body itself at various pitch angles. The simulation results show that with a heated spot on the disk, the air bearing pressure and air bearing force that acted on the slider surface will increase when the pitch angle becomes larger. It is also found that the bearing force increases with the heated spot size and the effects of a heated spot become more obvious at a larger pitch angle. On the other hand, the slider body temperature is observed to have a noticeable effect on air bearing pressure and force. The smaller pitch angle enlarges the tendency of bearing force variations with the slider temperature and makes the slider more sensitive to its temperature changes. 1. Introduction With the increasing demands for large amount of storage nowadays, higher density recording technologies are required in hard disk drive industry. Heat assisted magnetic recording (HAMR) is one of the promising technologies to push the recording areal density of magnetic disk drives towards 10?Tb/in2 and beyond. An HAMR system requires using a focused laser beam to heat up the media so as to reduce the media coercivity. It makes magnetic writing possible over high anisotropy magnetic media [1]. Performing the laser heating process requires the optimized slider designs integrating with the near field optical system inside for precise heating and recording. The integrated slider with an optical heating device normally requires flying at an extremely low head media spacing, which is only around few nanometers nowadays, to provide a high field at heated spot position for successful recording [2, 3]. With this spacing allowance, the Knudsen number, which represents the level of rarefaction effect in the flow, will be much larger than 1.0 and the flow in the head disk interface region can no longer be assumed as a continuum one. Some modifications of continuum equations with appropriate slip boundary conditions are usually required. However, it is very challenging to study the slider air bearing in a??HAMR head disk interface with the current modified continuum equations due to the heat transfer issues involved in the HAMR system. Although some previous studies [4–6] proposed some heat transfer models for addressing such problems, these models cannot be used directly with the air


[1]  J. J. M. Ruigrok, R. Coehoorn, S. R. Cumpson, and H. W. Kesteren, “Disk recording beyond 100 Gb/in.2: hybrid recording?” Journal of Applied Physics, vol. 87, no. 9, pp. 5398–5403, 2000.
[2]  M. H. Kryder, E. C. Gage, T. W. Mcdaniel et al., “Heat assisted magnetic recording,” Proceedings of the IEEE, vol. 96, no. 11, pp. 1810–1835, 2008.
[3]  B. Liu, S. Yu, M. Zhang et al., “Air-bearing design towards highly stable head-disk interface at ultralow flying height,” IEEE Transactions on Magnetics, vol. 43, no. 2, pp. 715–720, 2007.
[4]  W. D. Zhou, B. Liu, S. K. Yu, W. Hua, and C. H. Wong, “A generalized heat transfer model for thin film bearings at head-disk interface,” Applied Physics Letters, vol. 92, no. 4, Article ID 043109, 3 pages, 2008.
[5]  D. Chen, N. Liu, and D. B. Bogy, “A phenomenological heat transfer model for the molecular gas lubrication system in hard disk drives,” Journal of Applied Physics, vol. 105, no. 8, Article ID 084303, 8 pages, 2009.
[6]  W. D. Zhou, B. Liu, S. K. Yu, and W. Hua, “Rarefied-gas heat transfer in micro- and nanoscale Couette flows,” Physical Review E, vol. 81, no. 1, Article ID 011204, 7 pages, 2010.
[7]  K. S. Myo, W. Zhou, S. Yu, and W. Hua, “Direct Monte Carlo simulation of air bearing effects in heat-assisted magnetic recording,” Microsystem Technologies, vol. 17, no. 5–7, pp. 903–909, 2011.
[8]  S. Fukui, N. Kitagawa, R. Wakabayashi, K. Yamane, and H. Matsuoka, “Molecular gas-film lubrication analyses considering boundary temperature distributions,” in Proceedings of the Joint International Conference on Micromechantronics for Information and Precision Equipment (MIPE'12), pp. 194–196, Santa Clara, Calif, USA, 2012.
[9]  G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon, Oxford, UK, 1994.
[10]  N. Liu and E. Y. K. Ng, “The posture effects of a slider air bearing on its performance with a direct simulation Monte Carlo method,” Journal of Micromechanics and Microengineering, vol. 11, no. 5, pp. 463–473, 2001.
[11]  W. Huang and D. B. Bogy, “Three-dimensional direct simulation Monte Carlo method for slider air bearings,” Physics of Fluids, vol. 9, no. 6, pp. 1764–1769, 1997.
[12]  S. Fukui and R. Kaneko, “Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report—derivation of a generalized lubrication equation including thermal creep flow,” Journal of Tribology, vol. 110, no. 2, pp. 253–262, 1988.


comments powered by Disqus