All Title Author
Keywords Abstract


Poststroke Muscle Architectural Parameters of the Tibialis Anterior and the Potential Implications for Rehabilitation of Foot Drop

DOI: 10.1155/2014/948475

Full-Text   Cite this paper   Add to My Lib

Abstract:

Poststroke dorsiflexor weakness and paretic limb foot drop increase the risk of stumbling and falling and decrease overall functional mobility. It is of interest whether dorsiflexor muscle weakness is primarily neurological in origin or whether morphological differences also contribute to the impairment. Ten poststroke hemiparetic individuals were imaged bilaterally using noninvasive medical imaging techniques. Magnetic resonance imaging was used to identify changes in tibialis anterior muscle volume and muscle belly length. Ultrasonography was used to measure fascicle length and pennation angle in a neutral position. We found no clinically meaningful bilateral differences in any architectural parameter across all subjects, which indicates that these subjects have the muscular capacity to dorsiflex their foot. Therefore, poststroke dorsiflexor weakness is primarily neural in origin and likely due to muscle activation failure or increased spasticity of the plantar flexors. The current finding suggests that electrical stimulation methods or additional neuromuscular retraining may be more beneficial than targeting muscle strength (i.e., increasing muscle mass). 1. Introduction In the United States alone, about 795,000 people suffer from a new or recurrent stroke each year [1]. Stroke survivors often suffer from hemiparesis or muscle weakness on one side of the body. Foot drop commonly occurs from muscle weakness in the paretic leg and manifests itself as a decrease in dorsiflexion range of motion [2]. For many poststroke survivors, paretic limb foot drop increases the risk of stumbling and falling and decreases functional mobility [2]. It is unclear whether dorsiflexor weakness is solely due to neurological impairment following stroke or whether changes in the muscle architecture are additional contributing factors. Muscle fascicle length and pennation angle (i.e., the angle in which the fascicles insert themselves into the aponeuroses of the muscle) are two architectural parameters that can influence how a muscle generates force. Varying these two parameters can alter the functional ability of a muscle, including range of motion and total force production [3]. Therefore, changes in fascicle length or pennation angle may contribute to post-stroke dorsiflexor weakness [4]. Medical imaging techniques (e.g., ultrasonography and magnetic resonance imaging) are often used to study muscle architecture in vivo in healthy populations and patients with neurological disorders [5–11]. However, little is known about poststroke muscle architectural changes. In the

References

[1]  V. L. Roger, A. S. Go, D. M. Lloyd-Jones, et al., “Heart disease and stroke statistics—2012 update: a report from the American Heart Association,” Circulation, vol. 125, no. 1, pp. e2–e220, 2012.
[2]  A. I. R. Kottink, L. J. M. Oostendorp, J. H. Buurke, A. V. Nene, H. J. Hermens, and M. J. IJzerman, “The orthotic effect of functional electrical stimulation on the improvement of walking in stroke patients with a dropped foot: a systematic review,” Artificial Organs, vol. 28, no. 6, pp. 577–586, 2004.
[3]  R. Lieber and J. Fridén, “Clinical significance of skeletal muscle architecture,” Clinical Orthopaedics and Related Research, vol. 383, pp. 140–151, 2001.
[4]  F. Gao, T. H. Grant, E. J. Roth, and L. Zhang, “Changes in passive mechanical properties of the gastrocnemius muscle at the muscle fascicle and joint levels in stroke survivors,” Archives of Physical Medicine and Rehabilitation, vol. 90, no. 5, pp. 819–826, 2009.
[5]  F. Gao, H. Zhao, D. Gaebler-Spira, and L. Zhang, “In vivo evaluations of morphologic changes of gastrocnemius muscle fascicles and Achilles tendon in children with cerebral palsy,” The American Journal of Physical Medicine and Rehabilitation, vol. 90, no. 5, pp. 364–371, 2011.
[6]  A. P. Shortland, C. A. Harris, M. Gough, and R. O. Robinson, “Architecture of the medial gastrocnemius in children with spastic diplegia,” Developmental Medicine and Child Neurology, vol. 44, no. 3, pp. 158–163, 2002.
[7]  L. Li, K. Y. Tong, and X. Hu, “The effect of poststroke impairments on brachialis muscle architecture as measured by ultrasound,” Archives of Physical Medicine and Rehabilitation, vol. 88, no. 2, pp. 243–250, 2007.
[8]  A. A. Mohagheghi, T. Khan, T. H. Meadows, K. Giannikas, V. Baltzopoulos, and C. N. Maganaris, “Differences in gastrocnemius muscle architecture between the paretic and non-paretic legs in children with hemiplegic cerebral palsy,” Clinical Biomechanics, vol. 22, no. 6, pp. 718–724, 2007.
[9]  J. W. Ramsay, P. J. Barrance, T. S. Buchanan, and J. S. Higginson, “Paretic muscle atrophy and non-contractile tissue content in individual muscles of the post-stroke lower extremity,” Journal of Biomechanics, vol. 44, no. 16, pp. 2741–2746, 2011.
[10]  R. Lampe, S. Grassl, J. Mitternacht, L. Gerdesmeyer, and R. Gradinger, “MRT-measurements of muscle volumes of the lower extremities of youths with spastic hemiplegia caused by cerebral palsy,” Brain and Development, vol. 28, no. 8, pp. 500–506, 2006.
[11]  C. S. Klein, D. Brooks, D. Richardson, W. E. McIlroy, and M. T. Bayley, “Voluntary activation failure contributes more to plantar flexor weakness than antagonist coactivation and muscle atrophy in chronic stroke survivors,” Journal of Applied Physiology, vol. 109, no. 5, pp. 1337–1346, 2010.
[12]  J. R. Kremer, D. N. Mastronarde, and J. R. McIntosh, “Computer visualization of three-dimensional image data using IMOD,” Journal of Structural Biology, vol. 116, no. 1, pp. 71–76, 1996.
[13]  R. Ross, J. Rissanen, H. Pedwell, J. Clifford, and P. Shragge, “Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men,” Journal of Applied Physiology, vol. 81, no. 6, pp. 2445–2455, 1996.
[14]  J. A. Kent-Braun, A. V. Ng, and K. Young, “Skeletal muscle contractile and noncontractile components in young and older women and men,” Journal of Applied Physiology, vol. 88, no. 2, pp. 662–668, 2000.
[15]  B. H. Goodpaster, V. A. Stenger, F. Boada et al., “Skeletal muscle lipid concentration quantified by magnetic resonance imaging,” American Journal of Clinical Nutrition, vol. 79, no. 5, pp. 748–754, 2004.
[16]  L. Weng, A. P. Tirumalai, C. M. Lowery et al., “US extended-field-of-view imaging technology,” Radiology, vol. 203, no. 3, pp. 877–880, 1997.
[17]  A. S. Ryan, C. L. Dobrovolny, G. V. Smith, K. H. Silver, and R. F. Macko, “Hemiparetic muscle atrophy and increased intramuscular fat in stroke patients,” Archives of Physical Medicine and Rehabilitation, vol. 83, no. 12, pp. 1703–1707, 2002.
[18]  N. Metoki, Y. Sato, K. Satoh, K. Okumura, and J. Iwamoto, “Muscular atrophy in the hemiplegic thigh in patients after stroke,” The American Journal of Physical Medicine and Rehabilitation, vol. 82, no. 11, pp. 862–865, 2003.
[19]  B. A. Knarr, J. W. Ramsay, T. S. Buchanan, J. S. Higginson, and S. A. Binder-Macleod, “Muscle volume as a predictor of maximum force generating ability in the plantar flexors post-stroke,” Muscle & Nerve, vol. 48, pp. 971–976, 2013.
[20]  H. Zhao, Y. Ren, Y. Wu, S. Q. Liu, and L. Zhang, “Ultrasonic evaluations of Achilles tendon mechanical properties poststroke,” Journal of Applied Physiology, vol. 106, no. 3, pp. 843–849, 2009.
[21]  Y. Kawakami, T. Abe, and T. Fukunaga, “Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles,” Journal of Applied Physiology, vol. 74, no. 6, pp. 2740–2744, 1993.
[22]  T. M. Kesar, R. Perumal, D. S. Reisman et al., “Functional electrical stimulation of ankle plantarflexor and dorsiflexor muscles: effects on poststroke gait,” Stroke, vol. 40, no. 12, pp. 3821–3827, 2009.
[23]  D. G. Embrey, S. L. Holtz, G. Alon, B. A. Brandsma, and S. W. McCoy, “Functional electrical stimulation to dorsiflexors and plantar flexors during gait to improve walking in adults with chronic hemiplegia,” Archives of Physical Medicine and Rehabilitation, vol. 91, no. 5, pp. 687–696, 2010.
[24]  J. A. Apkarian and S. Naumann, “Stretch reflex inhibition using electrical stimulation in normal subjects and subjects with spasticity,” Journal of Biomedical Engineering, vol. 13, no. 1, pp. 67–73, 1991.
[25]  C. Crone, J. Nielsen, N. Petersen, M. Ballegaard, and H. Hultborn, “Disynaptic reciprocal inhibition of ankle extensors in spastic patients,” Brain, vol. 117, no. 5, pp. 1161–1168, 1994.
[26]  H. Morita, C. Crone, D. Christenhuis, N. T. Petersen, and J. B. Nielsen, “Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity,” Brain, vol. 124, no. 4, pp. 826–837, 2001.
[27]  P. H. Veltink, M. Ladouceur, and T. Sinkj?r, “Inhibition of the triceps surae stretch reflex by stimulation of the deep peroneal nerve in persons with spastic stroke,” Archives of Physical Medicine and Rehabilitation, vol. 81, no. 8, pp. 1016–1024, 2000.
[28]  A. K. Thompson, K. L. Estabrooks, S. Chong, and R. B. Stein, “Spinal reflexes in ankle flexor and extensor muscles after chronic central nervous system lesions and functional electrical stimulation,” Neurorehabilitation and Neural Repair, vol. 23, no. 2, pp. 133–142, 2009.
[29]  R. L. Lieber, G. J. Loren, and J. Friden, “In vivo measurement of human wrist extensor muscle sarcomere length changes,” Journal of Neurophysiology, vol. 71, no. 3, pp. 874–881, 1994.
[30]  R. Scelsi, S. Lotta, G. Lommi, P. Poggi, and C. Marchetti, “Hemiplegic atrophy: morphological findings in the anterior tibial muscle of patients with cerebral vascular accidents,” Acta Neuropathologica, vol. 62, no. 4, pp. 324–331, 1984.

Full-Text

comments powered by Disqus