All Title Author
Keywords Abstract


Plasmacytoid Dendritic Cells Suppress HIV-1 Replication but Contribute to HIV-1 Induced Immunopathogenesis in Humanized Mice

DOI: doi/10.1371/journal.ppat.1004291

Full-Text   Cite this paper   Add to My Lib

Abstract:

The role of plasmacytoid dendritic cells (pDC) in human immunodeficiency virus type 1 (HIV-1) infection and pathogenesis remains unclear. HIV-1 infection in the humanized mouse model leads to persistent HIV-1 infection and immunopathogenesis, including type I interferons (IFN-I) induction, immune-activation and depletion of human leukocytes, including CD4 T cells. We developed a monoclonal antibody that specifically depletes human pDC in all lymphoid organs in humanized mice. When pDC were depleted prior to HIV-1 infection, the induction of IFN-I and interferon-stimulated genes (ISGs) were abolished during acute HIV-1 infection with either a highly pathogenic CCR5/CXCR4-dual tropic HIV-1 or a standard CCR5-tropic HIV-1 isolate. Consistent with the anti-viral role of IFN-I, HIV-1 replication was significantly up-regulated in pDC-depleted mice. Interestingly, the cell death induced by the highly pathogenic HIV-1 isolate was severely reduced in pDC-depleted mice. During chronic HIV-1 infection, depletion of pDC also severely reduced the induction of IFN-I and ISGs, associated with elevated HIV-1 replication. Surprisingly, HIV-1 induced depletion of human immune cells including T cells in lymphoid organs, but not the blood, was reduced in spite of the increased viral replication. The increased cell number in lymphoid organs was associated with a reduced level of HIV-induced cell death in human leukocytes including CD4 T cells. We conclude that pDC play opposing roles in suppressing HIV-1 replication and in promoting HIV-1 induced immunopathogenesis. These findings suggest that pDC-depletion and IFN-I blockade will provide novel strategies for treating those HIV-1 immune non-responsive patients with persistent immune activation despite effective anti-retrovirus treatment.

References

[1]  Ascher MS, Sheppard HW (1988) AIDS as immune system activation: a model for pathogenesis. Clin Exp Immunol 73: 165–167.
[2]  Sodora DL, Silvestri G (2008) Immune activation and AIDS pathogenesis. Aids 22: 439–446. doi: 10.1097/qad.0b013e3282f2dbe7
[3]  Moir S, Chun TW, Fauci AS (2011) Pathogenic mechanisms of HIV disease. Annu Rev Pathol 6: 223–248. doi: 10.1146/annurev-pathol-011110-130254
[4]  Giorgi JV, Liu Z, Hultin LE, Cumberland WG, Hennessey K, et al. (1993) Elevated levels of CD38+ CD8+ T cells in HIV infection add to the prognostic value of low CD4+ T cell levels: results of 6 years of follow-up. The Los Angeles Center, Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr 6: 904–912.
[5]  Apetrei C, Sumpter B, Souquiere S, Chahroudi A, Makuwa M, et al. (2011) Immunovirological analyses of chronically simian immunodeficiency virus SIVmnd-1- and SIVmnd-2-infected mandrills (Mandrillus sphinx). J Virol 85: 13077–13087. doi: 10.1128/jvi.05693-11
[6]  Klatt NR, Estes JD, Sun X, Ortiz AM, Barber JS, et al. (2012) Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol 5: 646–657. doi: 10.1038/mi.2012.38
[7]  Heikenwalder M, Polymenidou M, Junt T, Sigurdson C, Wagner H, et al. (2004) Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat Med 10: 187–192. doi: 10.1038/nm987
[8]  Baenziger S, Heikenwalder M, Johansen P, Schlaepfer E, Hofer U, et al. (2009) Triggering TLR7 in mice induces immune activation and lymphoid system disruption, resembling HIV-mediated pathology. Blood 113: 377–388. doi: 10.1182/blood-2008-04-151712
[9]  Pandrea I, Sodora DL, Silvestri G, Apetrei C (2008) Into the wild: simian immunodeficiency virus (SIV) infection in natural hosts. Trends Immunol 29: 419–428. doi: 10.1016/j.it.2008.05.004
[10]  Murray SM, Down CM, Boulware DR, Stauffer WM, Cavert WP, et al. (2010) Reduction of immune activation with chloroquine therapy during chronic HIV infection. J Virol 84: 12082–12086. doi: 10.1128/jvi.01466-10
[11]  Piconi S, Parisotto S, Rizzardini G, Passerini S, Terzi R, et al. (2011) Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders. Blood 118: 3263–3272. doi: 10.1182/blood-2011-01-329060
[12]  Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, et al. (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12: 1365–1371. doi: 10.1038/nm1511
[13]  Fitzgerald-Bocarsly P, Jacobs ES (2010) Plasmacytoid dendritic cells in HIV infection: striking a delicate balance. J Leukoc Biol 87: 609–620. doi: 10.1189/jlb.0909635
[14]  Skurkovich S, Skurkovich B, Bellanti JA (1993) A disturbance of interferon synthesis with the hyperproduction of unusual kinds of interferon can trigger autoimmune disease and play a pathogenetic role in AIDS: the removal of these interferons can be therapeutic. Med Hypotheses 41: 177–185. doi: 10.1016/0306-9877(93)90066-y
[15]  Meier A, Chang JJ, Chan ES, Pollard RB, Sidhu HK, et al. (2009) Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med 15: 955–959. doi: 10.1038/nm.2004
[16]  Campillo-Gimenez L, Laforge M, Fay M, Brussel A, Cumont MC, et al. (2010) Nonpathogenesis of simian immunodeficiency virus infection is associated with reduced inflammation and recruitment of plasmacytoid dendritic cells to lymph nodes, not to lack of an interferon type I response, during the acute phase. J Virol 84: 1838–1846. doi: 10.1128/jvi.01496-09
[17]  Jacquelin B, Mayau V, Targat B, Liovat AS, Kunkel D, et al. (2009) Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. J Clin Invest 119: 3544–3555. doi: 10.1172/jci40093
[18]  Manches O, Munn D, Fallahi A, Lifson J, Chaperot L, et al. (2008) HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J Clin Invest 118: 3431–3439. doi: 10.1172/jci34823
[19]  Baca-Regen L, Heinzinger N, Stevenson M, Gendelman HE (1994) Alpha interferon-induced antiretroviral activities: restriction of viral nucleic acid synthesis and progeny virion production in human immunodeficiency virus type 1-infected monocytes. J Virol 68: 7559–7565.
[20]  Buimovici-Klein E, Lange M, Klein RJ, Cooper LZ, Grieco MH (1983) Is presence of interferon predictive for AIDS? Lancet 2: 344. doi: 10.1016/s0140-6736(83)90322-7
[21]  Buimovici-Klein E, Lange M, Klein RJ, Grieco MH, Cooper LZ (1986) Long-term follow-up of serum-interferon and its acid-stability in a group of homosexual men. AIDS Res 2: 99–108. doi: 10.1089/aid.1.1986.2.99
[22]  Bosinger SE, Li Q, Gordon SN, Klatt NR, Duan L, et al. (2009) Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. J Clin Invest 119: 3556–3572. doi: 10.1172/jci40115
[23]  Harris LD, Tabb B, Sodora DL, Paiardini M, Klatt NR, et al. (2010) Downregulation of robust acute type I interferon responses distinguishes nonpathogenic simian immunodeficiency virus (SIV) infection of natural hosts from pathogenic SIV infection of rhesus macaques. J Virol 84: 7886–7891. doi: 10.1128/jvi.02612-09
[24]  Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23: 275–306. doi: 10.1146/annurev.immunol.23.021704.115633
[25]  Nascimbeni M, Perie L, Chorro L, Diocou S, Kreitmann L, et al. (2009) Plasmacytoid dendritic cells accumulate in spleens from chronically HIV-infected patients but barely participate in interferon-alpha expression. Blood 113: 6112–6119. doi: 10.1182/blood-2008-07-170803
[26]  Herbeuval JP, Hardy AW, Boasso A, Anderson SA, Dolan MJ, et al. (2005) Regulation of TNF-related apoptosis-inducing ligand on primary CD4+ T cells by HIV-1: role of type I IFN-producing plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 102: 13974–13979. doi: 10.1073/pnas.0505251102
[27]  Herbeuval JP, Nilsson J, Boasso A, Hardy AW, Kruhlak MJ, et al. (2006) Differential expression of IFN-alpha and TRAIL/DR5 in lymphoid tissue of progressor versus nonprogressor HIV-1-infected patients. Proc Natl Acad Sci U S A 103: 7000–7005. doi: 10.1073/pnas.0600363103
[28]  Stary G, Klein I, Kohlhofer S, Koszik F, Scherzer T, et al. (2009) Plasmacytoid dendritic cells express TRAIL and induce CD4+ T-cell apoptosis in HIV-1 viremic patients. Blood 114: 3854–3863. doi: 10.1182/blood-2009-04-217927
[29]  Chehimi J, Papasavvas E, Tomescu C, Gekonge B, Abdulhaqq S, et al. (2010) Inability of plasmacytoid dendritic cells to directly lyse HIV-infected autologous CD4+ T cells despite induction of tumor necrosis factor-related apoptosis-inducing ligand. J Virol 84: 2762–2773. doi: 10.1128/jvi.01350-09
[30]  Donaghy H, Pozniak A, Gazzard B, Qazi N, Gilmour J, et al. (2001) Loss of blood CD11c(+) myeloid and CD11c(?) plasmacytoid dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. Blood 98: 2574–2576. doi: 10.1182/blood.v98.8.2574
[31]  Feldman S, Stein D, Amrute S, Denny T, Garcia Z, et al. (2001) Decreased interferon-alpha production in HIV-infected patients correlates with numerical and functional deficiencies in circulating type 2 dendritic cell precursors. Clin Immunol 101: 201–210. doi: 10.1006/clim.2001.5111
[32]  Pacanowski J, Kahi S, Baillet M, Lebon P, Deveau C, et al. (2001) Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood 98: 3016–3021. doi: 10.1182/blood.v98.10.3016
[33]  Soumelis V, Scott I, Gheyas F, Bouhour D, Cozon G, et al. (2001) Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 98: 906–912. doi: 10.1182/blood.v98.4.906
[34]  Siegal FP, Lopez C, Fitzgerald PA, Shah K, Baron P, et al. (1986) Opportunistic infections in acquired immune deficiency syndrome result from synergistic defects of both the natural and adaptive components of cellular immunity. J Clin Invest 78: 115–123. doi: 10.1172/jci112539
[35]  Lichtner M, Rossi R, Rizza MC, Mengoni F, Sauzullo I, et al. (2008) Plasmacytoid dendritic cells count in antiretroviral-treated patients is predictive of HIV load control independent of CD4+ T-cell count. Curr HIV Res 6: 19–27. doi: 10.2174/157016208783571937
[36]  McCune J, Kaneshima H, Krowka J, Namikawa R, Outzen H, et al. (1991) The SCID-hu mouse: a small animal model for HIV infection and pathogenesis. Annu Rev Immunol 9: 399–429. doi: 10.1146/annurev.iy.09.040191.002151
[37]  Baenziger S, Tussiwand R, Schlaepfer E, Mazzucchelli L, Heikenwalder M, et al. (2006) Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-gamma c-/- mice. Proc Natl Acad Sci U S A 103: 15951–15956. doi: 10.1073/pnas.0604493103
[38]  Berges BK, Wheat WH, Palmer BE, Connick E, Akkina R (2006) HIV-1 infection and CD4 T cell depletion in the humanized Rag2-/-gamma c-/- (RAG-hu) mouse model. Retrovirology 3: 76.
[39]  Zhang L, Kovalev GI, Su L (2007) HIV-1 infection and pathogenesis in a novel humanized mouse model. Blood 109: 2978–2981. doi: 10.1182/blood-2006-07-033159
[40]  Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, et al. (2007) Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med 204: 705–714. doi: 10.1084/jem.20062411
[41]  Zhang L, Jiang Q, Li G, Jeffrey J, Kovalev GI, et al. (2011) Efficient infection, activation, and impairment of pDCs in the BM and peripheral lymphoid organs during early HIV-1 infection in humanized rag2(-)/(-)gamma C(-)/(-) mice in vivo. Blood 117: 6184–6192. doi: 10.1182/blood-2011-01-331173
[42]  Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, et al. (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304: 104–107. doi: 10.1126/science.1093933
[43]  Tanaka S, Saito Y, Kunisawa J, Kurashima Y, Wake T, et al. (2012) Development of Mature and Functional Human Myeloid Subsets in Hematopoietic Stem Cell-Engrafted NOD/SCID/IL2rgammaKO Mice. J Immunol 188 (12) 6145–55. doi: 10.4049/jimmunol.1103660
[44]  Meissner EG, Duus KM, Gao F, Yu XF, Su L (2004) Characterization of a thymus-tropic HIV-1 isolate from a rapid progressor: role of the envelope. Virology 328: 74–88. doi: 10.1016/j.virol.2004.07.019
[45]  Sivaraman V, Zhang L, Meissner EG, Jeffrey JL, Su L (2009) The heptad repeat 2 domain is a major determinant for enhanced human immunodeficiency virus type 1 (HIV-1) fusion and pathogenicity of a highly pathogenic HIV-1 Env. J Virol 83: 11715–11725. doi: 10.1128/jvi.00649-09
[46]  Meissner EG, Coffield VM, Su L (2005) Thymic pathogenicity of an HIV-1 envelope is associated with increased CXCR4 binding efficiency and V5-gp41-dependent activity, but not V1/V2-associated CD4 binding efficiency and viral entry. Virology 336: 184–197. doi: 10.1016/j.virol.2005.03.032
[47]  Lane HC, Masur H, Edgar LC, Whalen G, Rook AH, et al. (1983) Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N Engl J Med 309: 453–458. doi: 10.1056/nejm198308253090803
[48]  Grossman Z, Bentwich Z, Herberman RB (1993) From HIV infection to AIDS: are the manifestations of effective immune resistance misinterpreted? Clin Immunol Immunopathol 69: 123–135. doi: 10.1006/clin.1993.1160
[49]  Bosinger SE, Sodora DL, Silvestri G (2011) Generalized immune activation and innate immune responses in simian immunodeficiency virus infection. Curr Opin HIV AIDS 6: 411–418. doi: 10.1097/coh.0b013e3283499cf6
[50]  Kwa S, Kannanganat S, Nigam P, Siddiqui M, Shetty RD, et al. (2011) Plasmacytoid dendritic cells are recruited to the colorectum and contribute to immune activation during pathogenic SIV infection in rhesus macaques. Blood 118: 2763–2773. doi: 10.1182/blood-2011-02-339515
[51]  Manches O, Fernandez MV, Plumas J, Chaperot L, Bhardwaj N (2012) Activation of the noncanonical NF-kappaB pathway by HIV controls a dendritic cell immunoregulatory phenotype. Proc Natl Acad Sci U S A 109: 14122–14127. doi: 10.1073/pnas.1204032109
[52]  Riviere Y, Gresser I, Guillon JC, Bandu MT, Ronco P, et al. (1980) Severity of lymphocytic choriomeningitis virus disease in different strains of suckling mice correlates with increasing amounts of endogenous interferon. J Exp Med 152: 633–640. doi: 10.1084/jem.152.3.633
[53]  Wang Y, Swiecki M, Cella M, Alber G, Schreiber RD, et al. (2012) Timing and magnitude of type I interferon responses by distinct sensors impact CD8 T cell exhaustion and chronic viral infection. Cell Host Microbe 11: 631–642. doi: 10.1016/j.chom.2012.05.003
[54]  Cervantes-Barragan L, Lewis KL, Firner S, Thiel V, Hugues S, et al. (2012) Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proc Natl Acad Sci U S A 109: 3012–3017. doi: 10.1073/pnas.1117359109
[55]  Lepelley A, Louis S, Sourisseau M, Law HK, Pothlichet J, et al. (2011) Innate sensing of HIV-infected cells. PLoS Pathog 7: e1001284. doi: 10.1371/journal.ppat.1001284
[56]  Kader M, Smith AP, Guiducci C, Wonderlich ER, Normolle D, et al. (2013) Blocking TLR7- and TLR9-mediated IFN-alpha production by plasmacytoid dendritic cells does not diminish immune activation in early SIV infection. PLoS Pathog 9: e1003530. doi: 10.1371/journal.ppat.1003530
[57]  Bruel T, Dupuy S, Demoulins T, Rogez-Kreuz C, Dutrieux J, et al. (2014) Plasmacytoid dendritic cell dynamics tune interferon-alfa production in SIV-infected cynomolgus macaques. PLoS Pathog 10: e1003915. doi: 10.1371/journal.ppat.1003915
[58]  Hofer U, Baenziger S, Heikenwalder M, Schlaepfer E, Gehre N, et al. (2008) RAG2-/- gamma(c)-/- mice transplanted with CD34+ cells from human cord blood show low levels of intestinal engraftment and are resistant to rectal transmission of human immunodeficiency virus. J Virol 82: 12145–12153. doi: 10.1128/jvi.01105-08
[59]  Margolick JB, Munoz A, Donnenberg AD, Park LP, Galai N, et al. (1995) Failure of T-cell homeostasis preceding AIDS in HIV-1 infection. The Multicenter AIDS Cohort Study. Nat Med 1: 674–680. doi: 10.1038/nm0795-674
[60]  Scadden DT, Shen H, Cheng T (2001) Hematopoietic stem cells in HIV disease. J Natl Cancer Inst Monogr 24–29. doi: 10.1093/oxfordjournals.jncimonographs.a024253
[61]  Suzu S, Harada H, Matsumoto T, Okada S (2005) HIV-1 Nef interferes with M-CSF receptor signaling through Hck activation and inhibits M-CSF bioactivities. Blood 105: 3230–3237. doi: 10.1182/blood-2004-06-2084
[62]  Tanabe Y, Nishibori T, Su L, Arduini RM, Baker DP, et al. (2005) Cutting edge: role of STAT1, STAT3, and STAT5 in IFN-alpha beta responses in T lymphocytes. J Immunol 174: 609–613. doi: 10.4049/jimmunol.174.2.609
[63]  Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, et al. (2005) Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest 115: 3265–3275. doi: 10.1172/jci26032
[64]  Vaccari M, Fenizia C, Ma ZM, Hryniewicz A, Boasso A, et al. (2014) Transient increase of interferon-stimulated genes and no clinical benefit by chloroquine treatment during acute simian immunodeficiency virus infection of macaques. AIDS Res Hum Retroviruses 30: 355–362. doi: 10.1089/aid.2013.0218
[65]  Paton NI, Goodall RL, Dunn DT, Franzen S, Collaco-Moraes Y, et al. (2012) Effects of hydroxychloroquine on immune activation and disease progression among HIV-infected patients not receiving antiretroviral therapy: a randomized controlled trial. JAMA 308: 353–361. doi: 10.1001/jama.2012.6936
[66]  Wilson EB, Yamada DH, Elsaesser H, Herskovitz J, Deng J, et al. (2013) Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science 340: 202–207. doi: 10.1126/science.1235208
[67]  Teijaro JR, Ng C, Lee AM, Sullivan BM, Sheehan KC, et al. (2013) Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science 340: 207–211. doi: 10.1126/science.1235214
[68]  Hardy AW, Graham DR, Shearer GM, Herbeuval JP (2007) HIV turns plasmacytoid dendritic cells (pDC) into TRAIL-expressing killer pDC and down-regulates HIV coreceptors by Toll-like receptor 7-induced IFN-alpha. Proc Natl Acad Sci U S A 104: 17453–17458. doi: 10.1073/pnas.0707244104
[69]  Sauce D, Larsen M, Fastenackels S, Pauchard M, Ait-Mohand H, et al. (2011) HIV disease progression despite suppression of viral replication is associated with exhaustion of lymphopoiesis. Blood 117: 5142–5151. doi: 10.1182/blood-2011-01-331306
[70]  Zhang Z, Fu J, Xu X, Wang S, Xu R, et al. (2013) Safety and immunological responses to human mesenchymal stem cell therapy in difficult-to-treat HIV-1-infected patients. AIDS 27: 1283–1293. doi: 10.1097/qad.0b013e32835fab77
[71]  Douek DC (2014) Perturbing Interferon Signaling in SIV Infection. Conference on Retroviruses and Opportunistic Infections. Boston, MA.
[72]  Puig M, Tosh KW, Schramm LM, Grajkowska LT, Kirschman KD, et al. (2012) TLR9 and TLR7 agonists mediate distinct type I IFN responses in humans and nonhuman primates in vitro and in vivo. J Leukoc Biol 91: 147–158. doi: 10.1189/jlb.0711371
[73]  Poloni A, Sartini D, Emanuelli M, Trappolini S, Mancini S, et al. (2011) Gene expression profile of cytokines in patients with chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation with reduced conditioning. Cytokine 53: 376–383. doi: 10.1016/j.cyto.2010.12.008
[74]  Liu X, Silverstein PS, Singh V, Shah A, Qureshi N, et al. (2012) Methamphetamine increases LPS-mediated expression of IL-8, TNF-alpha and IL-1beta in human macrophages through common signaling pathways. PLoS One 7: e33822. doi: 10.1371/journal.pone.0033822
[75]  Urosevic M, Dummer R, Conrad C, Beyeler M, Laine E, et al. (2005) Disease-independent skin recruitment and activation of plasmacytoid predendritic cells following imiquimod treatment. J Natl Cancer Inst 97: 1143–1153. doi: 10.1093/jnci/dji207
[76]  Singh R, Gaiha G, Werner L, McKim K, Mlisana K, et al. (2011) Association of TRIM22 with the type 1 interferon response and viral control during primary HIV-1 infection. J Virol 85: 208–216. doi: 10.1128/jvi.01810-10
[77]  Washburn ML, Bility MT, Zhang L, Kovalev GI, Buntzman A, et al. (2011) A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 140: 1334–1344. doi: 10.1053/j.gastro.2011.01.001

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal