All Title Author
Keywords Abstract

PLOS ONE  2014 

MicroRNA Expression Differences in Human Hematopoietic Cell Lineages Enable Regulated Transgene Expression

DOI: 10.1371/journal.pone.0102259

Full-Text   Cite this paper   Add to My Lib

Abstract:

Blood microRNA (miRNA) levels have been associated with and shown to participate in disease pathophysiology. However, the hematopoietic cell of origin of blood miRNAs and the individual blood cell miRNA profiles are poorly understood. We report the miRNA content of highly purified normal hematopoietic cells from the same individuals. Although T-cells, B-cells and granulocytes had the highest miRNA content per cell, erythrocytes contributed more cellular miRNA to the blood, followed by granulocytes and platelets. miRNA profiling revealed different patterns and different expression levels of miRNA specific for each lineage. miR-30c-5p was determined to be an appropriate reference normalizer for cross-cell qRT-PCR comparisons. miRNA profiling of 5 hematopoietic cell lines revealed differential expression of miR-125a-5p. We demonstrated endogenous levels of miR-125a-5p regulate reporter gene expression in Meg-01 and Jurkat cells by (1) constructs containing binding sites for miR-125a-5p or (2) over-expressing or inhibiting miR-125a-5p. This quantitative analysis of the miRNA profiles of peripheral blood cells identifies the circulating hematopoietic cellular miRNAs, supports the use of miRNA profiles for distinguishing different hematopoietic lineages and suggests that endogenously expressed miRNAs can be exploited to regulate transgene expression in a cell-specific manner.

References

[1]  Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12: 861–874. doi: 10.1038/nrg3074
[2]  Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19: 92–105. doi: 10.1101/gr.082701.108
[3]  Zhang Q, Iida R, Yokota T, Kincade PW (2013) Early events in lymphopoiesis: an update. Current opinion in hematology 20: 265–272. doi: 10.1097/moh.0b013e3283612628
[4]  O'Connell RM, Zhao JL, Rao DS (2011) MicroRNA function in myeloid biology. Blood 118: 2960–2969. doi: 10.1182/blood-2011-03-291971
[5]  Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF (2011) From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood 118: 6258–6268. doi: 10.1182/blood-2011-07-356006
[6]  Edelstein LC, McKenzie SE, Shaw C, Holinstat MA, Kunapuli SP, et al. (2013) MicroRNAs in platelet production and activation. Journal of thrombosis and haemostasis: JTH 11 Suppl 1340–350. doi: 10.1111/jth.12214
[7]  Garzon R, Heaphy CE, Havelange V, Fabbri M, Volinia S, et al. (2009) MicroRNA 29b functions in acute myeloid leukemia. Blood 114: 5331–5341. doi: 10.1182/blood-2009-03-211938
[8]  Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, et al. (2010) Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nature Medicine 16: 49–58. doi: 10.1038/nm.2054
[9]  Kumar MS, Narla A, Nonami A, Mullally A, Dimitrova N, et al. (2011) Coordinate loss of a microRNA and protein-coding gene cooperate in the pathogenesis of 5q- syndrome. Blood 118: 4666–4673. doi: 10.1182/blood-2010-12-324715
[10]  Klusmann JH, Li Z, Bohmer K, Maroz A, Koch ML, et al. (2010) miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes and Development 24: 478–490. doi: 10.1101/gad.1856210
[11]  Girardot M, Pecquet C, Boukour S, Knoops L, Ferrant A, et al. (2010) miR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets. Blood 116: 437–445. doi: 10.1182/blood-2008-06-165985
[12]  Lawrie CH, Soneji S, Marafioti T, Cooper CD, Palazzo S, et al. (2007) MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 121: 1156–1161. doi: 10.1002/ijc.22800
[13]  Reid G, Kirschner MB, van Zandwijk N (2011) Circulating microRNAs: Association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 80: 193–208. doi: 10.1016/j.critrevonc.2010.11.004
[14]  Weiland M, Gao XH, Zhou L, Mi QS (2012) Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases. RNA Biol 9: 850–859. doi: 10.4161/rna.20378
[15]  Stratz C, Nuhrenberg TG, Binder H, Valina CM, Trenk D, et al. (2012) Micro-array profiling exhibits remarkable intra-individual stability of human platelet micro-RNA. Thrombosis and haemostasis 107: 634–641. doi: 10.1160/th11-10-0742
[16]  Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105: 10513–10518. doi: 10.1073/pnas.0804549105
[17]  Kai ZS, Pasquinelli AE (2010) MicroRNA assassins: factors that regulate the disappearance of miRNAs. NatStructMolBiol 17: 5–10. doi: 10.1038/nsmb.1762
[18]  Chen X, Ba Y, Ma L, Cai X, Yin Y, et al. (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18: 997–1006. doi: 10.1038/cr.2008.282
[19]  Lu J, Guo S, Ebert BL, Zhang H, Peng X, et al. (2008) MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. DevCell 14: 843–853. doi: 10.1016/j.devcel.2008.03.012
[20]  Xu X, Gnatenko DV, Ju J, Hitchcock IS, Martin DW, et al. (2012) Systematic analysis of microRNA fingerprints in thrombocythemic platelets using integrated platforms. Blood 120: 3575–3585. doi: 10.1182/blood-2012-02-411264
[21]  Nagalla S, Shaw C, Kong X, Kondkar AA, Edelstein LC, et al. (2011) Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 117: 5189–5197. doi: 10.1182/blood-2010-09-299719
[22]  Ferrajoli A, Shanafelt TD, Ivan C, Shimizu M, Rabe KG, et al. (2013) Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood 122: 1891–1899. doi: 10.1182/blood-2013-01-478222
[23]  Willeit P, Zampetaki A, Dudek K, Kaudewitz D, King AS, et al.. (2013) Circulating MicroRNAs as Novel Biomarkers for Platelet Activation. Circulation research.
[24]  Boon RA, Vickers KC (2013) Intercellular transport of microRNAs. Arteriosclerosis, thrombosis, and vascular biology 33: 186–192. doi: 10.1161/atvbaha.112.300139
[25]  Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13: 423–433. doi: 10.1038/ncb2210
[26]  Risitano A, Beaulieu LM, Vitseva O, Freedman JE (2012) Platelets and platelet-like particles mediate intercellular RNA transfer. Blood 119: 6288–6295. doi: 10.1182/blood-2011-12-396440
[27]  Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, et al. (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119: 756–766. doi: 10.1182/blood-2011-02-338004
[28]  Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, et al. (2009) Transfer of microRNAs by embryonic stem cell microvesicles. PloS one 4: e4722–e4722. doi: 10.1371/journal.pone.0004722
[29]  Diehl P, Fricke A, Sander L, Stamm J, Bassler N, et al. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovascular research 93: 633–644. doi: 10.1093/cvr/cvs007
[30]  Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, et al. (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature communications 2: 282. doi: 10.1038/ncomms1285
[31]  Laffont B, Corduan A, Ple H, Duchez AC, Cloutier N, et al. (2013) Activated platelets can deliver mRNA regulatory Ago2*microRNA complexes to endothelial cells via microparticles. Blood 122: 253–261. doi: 10.1182/blood-2013-03-492801
[32]  Biton M, Levin A, Slyper M, Alkalay I, Horwitz E, et al. (2011) Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat Immunol 12: 239–246. doi: 10.1038/ni.1994
[33]  Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, et al. (2012) Comparing the MicroRNA spectrum between serum and plasma. PloS one 7: e41561. doi: 10.1371/journal.pone.0041561
[34]  Basso K, Sumazin P, Morozov P, Schneider C, Maute RL, et al. (2009) Identification of the human mature B cell miRNome. Immunity 30: 744–752. doi: 10.1016/j.immuni.2009.03.017
[35]  Rossi RL, Rossetti G, Wenandy L, Curti S, Ripamonti A, et al. (2011) Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b. Nat Immunol 12: 796–803. doi: 10.1038/ni.2057
[36]  Ramkissoon SH, Mainwaring La, Ogasawara Y, Keyvanfar K, McCoy JP, et al. (2006) Hematopoietic-specific microRNA expression in human cells. Leukemia research 30: 643–647. doi: 10.1016/j.leukres.2005.09.001
[37]  Chen SY, Wang Y, Telen MJ, Chi JT (2008) The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PloS one 3: e2360. doi: 10.1371/journal.pone.0002360
[38]  Duttagupta R, Jiang R, Gollub J, Getts RC, Jones KW (2011) Impact of cellular miRNAs on circulating miRNA biomarker signatures. PloS one 6: e20769. doi: 10.1371/journal.pone.0020769
[39]  Edelstein LC, Simon LM, Montoya RT, Holinstat M, Chen ES, et al.. Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. Nat Med.
[40]  Ricicova M, Palkova Z (2003) Comparative analyses of Saccharomyces cerevisiae RNAs using Agilent RNA 6000 Nano Assay and agarose gel electrophoresis. FEMS yeast research 4: 119–122. doi: 10.1016/s1567-1356(03)00145-4
[41]  Bisset LR, Lung TL, Kaelin M, Ludwig E, Dubs RW (2004) Reference values for peripheral blood lymphocyte phenotypes applicable to the healthy adult population in Switzerland. Eur J Haematol 72: 203–212. doi: 10.1046/j.0902-4441.2003.00199.x
[42]  Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, et al. (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26: 317–325. doi: 10.1038/nbt1385
[43]  Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64: 5245–5250. doi: 10.1158/0008-5472.can-04-0496
[44]  Wicki AN, Walz A, Gerber-Huber SN, Wenger RH, Vornhagen R, et al. (1989) Isolation and characterization of human blood platelet mRNA and construction of a cDNA library in lambda gt11. Confirmation of the platelet derivation by identification of GPIb coding mRNA and cloning of a GPIb coding cDNA insert. Thrombosis and haemostasis 61: 448–453.
[45]  Eikmans M, Rekers NV, Anholts JD, Heidt S, Claas FH (2013) Blood cell mRNAs and microRNAs: optimized protocols for extraction and preservation. Blood 121: e81–89. doi: 10.1182/blood-2012-06-438887
[46]  Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, et al. (2012) Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 5: 492–497. doi: 10.1158/1940-6207.capr-11-0370
[47]  Khetawat G, Faraday N, Nealen ML, Vijayan KV, Bolton E, et al. (2000) Human megakaryocytes and platelets contain the estrogen receptor á and androgen receptor (AR): testosterone regulates AR expression. Blood 95: 2289–2296.
[48]  Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, et al. (2011) Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 118: e101–111. doi: 10.1182/blood-2011-03-339705
[49]  Edelstein LC, Simon LM, Montoya RT, Holinstat M, Chen ES, et al.. (2013) Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. Nat Med.
[50]  George JN, Thoi LL, McManus LM, Reimann TA (1982) Isolation of human platelet membrane microparticles from plasma and serum. Blood 60: 834–840.
[51]  Guo G, Luc S, Marco E, Lin TW, Peng C, et al. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell stem cell 13: 492–505. doi: 10.1016/j.stem.2013.07.017
[52]  Patrick DM, Zhang CC, Tao Y, Yao H, Qi X, et al. (2010) Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. Genes & development 24: 1614–1619. doi: 10.1101/gad.1942810
[53]  Rasmussen KD, Simmini S, Abreu-Goodger C, Bartonicek N, Di Giacomo M, et al. (2010) The miR-144/451 locus is required for erythroid homeostasis. The Journal of experimental medicine 207: 1351–1358. doi: 10.1084/jem.20100458
[54]  Yu D, dos Santos CO, Zhao G, Jiang J, Amigo JD, et al. (2010) miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes & development 24: 1620–1633. doi: 10.1101/gad.1942110
[55]  Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, et al. (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131: 146–159. doi: 10.1016/j.cell.2007.07.021
[56]  Merkerova M, Belickova M, Bruchova H (2008) Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol 81: 304–310. doi: 10.1111/j.1600-0609.2008.01111.x
[57]  Simon LM, Edelstein LC, Nagalla S, Woodley AB, Chen ES, et al. (2014) Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated plateletomics. Blood 123: e37–45. doi: 10.1182/blood-2013-12-544692
[58]  Ward JR, Heath PR, Catto JW, Whyte MK, Milo M, et al. (2011) Regulation of neutrophil senescence by microRNAs. PloS one 6: e15810. doi: 10.1371/journal.pone.0015810
[59]  Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, et al. (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123: 819–831. doi: 10.1016/j.cell.2005.09.023
[60]  Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, et al. (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451: 1125–1129. doi: 10.1038/nature06607
[61]  Follenzi A, Battaglia M, Lombardo A, Annoni A, Roncarolo MG, et al. (2004) Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 103: 3700–3709. doi: 10.1182/blood-2003-09-3217
[62]  Mingozzi F, Liu YL, Dobrzynski E, Kaufhold A, Liu JH, et al. (2003) Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J Clin Invest 111: 1347–1356. doi: 10.1172/jci200316887
[63]  Brown BD, Cantore A, Annoni A, Sergi LS, Lombardo A, et al. (2007) A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110: 4144–4152. doi: 10.1182/blood-2007-03-078493
[64]  Brown BD, Venneri MA, Zingale A, Sergi Sergi L, Naldini L (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 12: 585–591. doi: 10.1038/nm1398

Full-Text

comments powered by Disqus