All Title Author
Keywords Abstract

PLOS ONE  2014 

Methane Production and Methanogenic Archaea in the Digestive Tracts of Millipedes (Diplopoda)

DOI: 10.1371/journal.pone.0102659

Full-Text   Cite this paper   Add to My Lib

Abstract:

Methane production by intestinal methanogenic Archaea and their community structure were compared among phylogenetic lineages of millipedes. Tropical and temperate millipedes of 35 species and 17 families were investigated. Species that emitted methane were mostly in the juliform orders Julida, Spirobolida, and Spirostreptida. The irregular phylogenetic distribution of methane production correlated with the presence of the methanogen-specific mcrA gene. The study brings the first detailed survey of methanogens’ diversity in the digestive tract of millipedes. Sequences related to Methanosarcinales, Methanobacteriales, Methanomicrobiales and some unclassified Archaea were detected using molecular profiling (DGGE). The differences in substrate preferences of the main lineages of methanogenic Archaea found in different millipede orders indicate that the composition of methanogen communities may reflect the differences in available substrates for methanogenesis or the presence of symbiotic protozoa in the digestive tract. We conclude that differences in methane production in the millipede gut reflect differences in the activity and proliferation of intestinal methanogens rather than an absolute inability of some millipede taxa to host methanogens. This inference was supported by the general presence of methanogenic activity in millipede faecal pellets and the presence of the 16S rRNA gene of methanogens in all tested taxa in the two main groups of millipedes, the Helminthophora and the Pentazonia.

References

[1]  Ehhalt D, Prather M, Dentener F, Derwent R, Dlugokencky E, et al.. (2001) Atmospheric Chemistry and Greenhouse Gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, editors. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the IPCC. Cambridge, United Kingdom and New York: Cambridge University Press. 239–287.
[2]  Ramaswamy V, Boucher O, Haigh J, Hauglustaine D, Haywood J, et al.. (2001) Radiative Forcing of Climate Change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, editors. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the IPCC. Cambridge, United Kingdom and New York: Cambridge University Press. 349–416.
[3]  EPA (2010) Methane and nitrous oxide emissions from natural sources Washington. EPA 430-R-10-001. U.S. Environmental Protection Agency. 194p.
[4]  Dlugokencky EJ, Nisbet EG, Fischer R, Lowry D (2011) Global atmospheric methane: budget, changes and dangers. Philos. T. Roy. Soc. A 369: 2058–2072. doi: 10.1098/rsta.2010.0341
[5]  Ehhalt DH (1974) The atmospheric cycle of methane. Tellus 26: 58–70. doi: 10.1111/j.2153-3490.1974.tb01952.x
[6]  Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6: 205–226. doi: 10.1006/anae.2000.0345
[7]  Eckburg PB, Bik EM, Bernstein ChN, Purdom E, Dethlefsen L, et al (2005) Diversity of the human intestinal microbial flora. Science 308: 1635–1638. doi: 10.1126/science.1110591
[8]  Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. NY. Acad. Sci. 1125: 171–189. doi: 10.1196/annals.1419.019
[9]  Ku?ar D, Avgu?tin G (2010) Molecular profiling and identification of methanogenic archaeal species from rabbit caecum. FEMS Microbiol. Ecol. 74: 1–8. doi: 10.1111/j.1574-6941.2010.00980.x
[10]  Crutzen PJ, Aselmann I, Seiler W (1986) Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans. Tellus 38B: 271–284. doi: 10.1111/j.1600-0889.1986.tb00193.x
[11]  Moss AR, Jouany JP, Newbold J (2000) Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49: 231–253. doi: 10.1051/animres:2000119
[12]  Makkar HPS, Vercoe PE (2007) Measuring methane production from ruminants. Dordrecht: Springer. 138 p.
[13]  Wilkinson JM (2012) Methane production by ruminants. Livestock 17: 33–35. doi: 10.1111/j.2044-3870.2012.00125.x
[14]  Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Annu. Rev. Microbiol. 36: 323–343. doi: 10.1146/annurev.mi.36.100182.001543
[15]  Rasmussen RA, Khalil MAK (1983) Global production of CH4 from termites. Nature 301: 700–702. doi: 10.1038/301700a0
[16]  Cruden DL, Markovetz AJ (1987) Microbial ecology of the cockroach gut. Annu. Rev. Microbiol. 41: 617–643. doi: 10.1146/annurev.mi.41.100187.003153
[17]  Gijzen HJ, Broers CAM, Barugahare M, Stumm CK (1991) Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut. Appl. Environ. Microbiol. 57: 1630–1634.
[18]  Jamali H, Livesley SJ, Dawes TZ, Cook GD, Hutley LB, Arndt SK (2011) Diurnal and seasonal variations in CH4 flux from termite mounds in tropical savannas of the Northern Territory, Australia. Agr. Forest Meteorol. 151: 1471–1479. doi: 10.1016/j.agrformet.2010.06.009
[19]  Hackstein JHP, Stumm CK (1994) Methane production in terrestrial arthropods. Proc. Natl. Acad. Sci. USA 91: 5441–5445. doi: 10.1073/pnas.91.12.5441
[20]  Rosenberg J, Hackstein JHP (1995) Methanbildende Blatthornk?fer (Scarabaeidae, Coleoptera), In: L?ser, S. editor. Verhandlugen Westdeutscher Entomologentag, Düsseldorf: L?bbecke-Museum. 67–72.
[21]  Bijnen FGC, Harren FJM, Hackstein JHP, Reuss J (1996) Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O and CO2 emission by cockroaches and scarab beetles. Appl. Optics 53: 5357–5368. doi: 10.1364/ao.35.005357
[22]  Sprenger WW, van Belzen MC, Rosenberg J, Hackstein JHP, Keltjens JT (2000) Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int. J. Syst. Evol. Microbiol. 50: 1989–1999. doi: 10.1099/00207713-50-6-1989
[23]  ?ustr V, ?imek M (2009) Methane release from millipedes and other soil invertebrates in Central Europe. Soil Biol. Biochem. 41: 1684–1688. doi: 10.1016/j.soilbio.2009.05.007
[24]  Ohkuma M, Noda S, Horikoshi K, Kudo T (1995) Phylogeny of symbiotic methanogen in the gut of termite Reticulitermes speratus. FEMS Microbiol. Lett. 134: 45–50. doi: 10.1111/j.1574-6968.1995.tb07912.x
[25]  Ohkuma M, Noda S, Kudo T (1999) Phylogenetic relationships of symbiotic methanogens in diverse termites. FEMS Microbiol. Lett. 171: 147–153. doi: 10.1111/j.1574-6968.1999.tb13425.x
[26]  Hara K, Shinzato N, Seo M, Oshima T, Yamagishi A (2002) Phylogenetic analysis of symbiotic Archaea living in the gut of xylophagous cockroaches. Microbes Environ. 17: 185–190. doi: 10.1264/jsme2.17.185
[27]  Egert M, Wagner B, Lemke T, Brune A, Friedrich MW (2003) Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol. 69: 6659–6668. doi: 10.1128/aem.69.11.6659-6668.2003
[28]  Dighe AS, Jangid K, Gonzalez JM, Pidiyar VJ, Patole MS, et al (2004) Comparison of 16S rRNA gene sequences of genus Methanobrevibacter. BMC Microbiol. 4: 20.
[29]  Paul K, Nonoh JM, Mikulski L, Brune A (2012) “Methanoplasmatales”. Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl. Environ. Microbiol. 78: 8245–8253. doi: 10.1128/aem.02193-12
[30]  Byzov BA (2006) Intestinal microbiota of millipedes, In: K?nig H, Varma A, editors, Intestinal microorganisms of termites and other invertebrates. Soil Biology 6, Berlin, Heidelberg: Springer Verlag. 89–114.
[31]  Hopkin SP, Read HJ (1992) Biology of millipedes. New York: Oxford University Press. 233p.
[32]  Oravecz O, Nyiro G, Marialigeti K (2002) A molecular approach in the analysis of the faecal bacterial community in an African millipede belonging to the family Spirostreptidae (Diplopoda). Eur. J. Soil Biol. 38: 67–70. doi: 10.1016/s1164-5563(01)01128-1
[33]  Knapp BA, Seeber J, Podmirseg SM, Rief A, Meyer E, et al. (2009) Molecular fingerprinting analysis of the gut microbiota of Cylindroiulus fulviceps (Diplopoda). Pedobiologia 52: 325–336. doi: 10.1016/j.pedobi.2008.11.005
[34]  van Hoek AHAM, van Alen TA, Sprakel VSI, Leunissen JAM, Brigge T, et al (2000) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol. Biol. Evol. 17: 251–258. doi: 10.1093/oxfordjournals.molbev.a026304
[35]  Mwabvu T, Hamer M, Slotow R, Barraclough D (2010) A revision of taxonomy and distribution of Archispirostreptus Silvestri 1895 (Diplopoda, Spirostreptida, Spirostreptidae), and description of a new Spirostreptus genus with three new species. Zootaxa 2567: 1–49.
[36]  ?imek M, ?ustr V (1995) Gas chromatographic microrespirometry: Further improvement and application in animal ecophysiology. Soil. Biol. Biochem. 27: 1227–1229. doi: 10.1016/0038-0717(95)00037-f
[37]  Tree of Life Web Project. 2002. Diplopoda. Millipedes. Version 01 January 2002 (temporary). Available: http://tolweb.org/Diplopoda/2532/2002.01?.01. Accessed 2014 March 11.
[38]  Regier CJ, Wilson MH, Shultz JW (2005) Phylogenetic analysis of myriapoda using tree nuclear protein-coding genes. Mol. Phylogenet. Evol. 34: 147–158. doi: 10.1016/j.ympev.2004.09.005
[39]  Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66: 5488–5491. doi: 10.1128/aem.66.12.5488-5491.2000
[40]  Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148: 3521–3530.
[41]  Kim SY, Lee SH, Freeman C, Fenner N, Kang H (2008) Comparative analysis of soil microbial communities and their responses to the short-term drought in bog, fen, and riparian wetlands, Soil Biol. Biochem. 40: 2874–2880. doi: 10.1016/j.soilbio.2008.08.004
[42]  Lueders T, Manefield M, Friedrich MW (2004) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ. Microbiol. 6: 73–78. doi: 10.1046/j.1462-2920.2003.00536.x
[43]  Watanabe T, Asakawa S, Nakanuta A, Nagaoka K, Kimura M (2004) DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil. FEMS Microbiol. Lett. 232: 153–163. doi: 10.1016/s0378-1097(04)00045-x
[44]  Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
[45]  Koubová A, Goberna M, ?imek M, Chroňáková A, Pi?l V, et al (2012) Effects of the earthworm Eisenia andrei on methanogens in a cattle-impacted soil: A microcosm study. Eur. J. Soil Biol. 48: 32–40. doi: 10.1016/j.ejsobi.2011.09.007
[46]  Mayer HP, Conrad R (1990) Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil. FEMS Microbiol. Ecol. 73: 103–112. doi: 10.1111/j.1574-6968.1990.tb03930.x
[47]  Peters V, Conrad R (1995) Methanogenic and other strictly anaerobic-bacteria in desert soil and other oxic soils. Appl. Environ. Microbiol. 61: 1673–1676.
[48]  Angel R, Matthies D, Conrad R (2011) Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. Plos One 6: e20453. doi: 10.1371/journal.pone.0020453
[49]  Ferry JG (1992) Biochemistry of methanogenesis. Crit. Rev. Biochem. Mol. 27: 473–503. doi: 10.3109/10409239209082570
[50]  Bignell DE (1984) Direct potentiometric determination of redox potentials of the gut contents in the termites Zootermopsis-nevadensis and Cubitermes-severus and in three other arthropods. J. Insect Physiol. 30: 169–174. doi: 10.1016/0022-1910(84)90122-7
[51]  Mikhajlova EV (2004) The millipedes (Diplopoda) of the Asian part of Russia. Golovatch Pensoft Series Faunistica I. Sofia, Moscow: Pensoft Publishers. 292 p.
[52]  Stoev P, Enghoff H (2008) A revision of the millipede tribe Apfelbeckiini Verhoeff, 1900 (Diplopoda: Callipodida: Schizopetalidae). Steenstrupia 30: 47–66.
[53]  Hoffman R, Payne J (1969) Diplopods as carnivores. Ecology 50: 1096–1098. doi: 10.2307/1936905
[54]  Enghoff H (1992) The size of a millipede. 8th International Congress of Myriapodology, Innsbruck, Austria. Berichte des naturwissenschaftlichen-medizinischen Verein Innsbruck 10: 47–56.
[55]  Morozova D, M?hlmann D, Wagner D (2007) Survival of methanogenic Archaea from Siberian permafrost under simulated Martian thermal conditions. Origins Life Evol. B. 37: 189–200. doi: 10.1007/s11084-006-9024-7
[56]  Embley TM, Martin W (1998) Molecular evolution - a hydrogen-producing mitochondrion. Nature 396: 517–519. doi: 10.1038/24994
[57]  Hackstein JHP (2010) Anaerobic ciliates and their methanogenic endosymbionts. In: Hackstein JHP, editor. (Endo)symbiotic methanogenic Archaea. Microbiology Monographs 19. Berlin, Heidelberg: Springer Verlag. 13–23.
[58]  Sarmiento BF, Leigh JA, Whitrnan WB (2011) Genetic systems for hydrogenotrophic methanogens. In: Rosenzweig AC, Ragsdale, SW, editors. Methods in Enzymology 494. San Diego: Elsevier Academic Press Inc. 43–73.
[59]  Brune A (2010) Methanogens in the digestive tracts of termites. In: Hackstein JHP, editor. (Endo)symbiotic Methanogenic Archaea. Microbiology Monographs 19. Berlin, Heidelberg: Springer Verlag. 13–23.
[60]  Tokura M, Ohkuma M, Kudo T (2000) Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol 33: 233–240. doi: 10.1111/j.1574-6941.2000.tb00745.x
[61]  Zinder SH, Sowers KR, Ferry JG (1985) Notes: Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int. J. Syst. Bacteriol. 35: 522–523. doi: 10.1099/00207713-35-4-522

Full-Text

comments powered by Disqus