All Title Author
Keywords Abstract

PLOS ONE  2014 

Nectar Robbing Positively Influences the Reproductive Success of Tecomella undulata (Bignoniaceae)

DOI: 10.1371/journal.pone.0102607

Full-Text   Cite this paper   Add to My Lib

Abstract:

The net consequence of nectar robbing on reproductive success of plants is usually negative and the positive effect is rarely produced. We evaluated the influence of nectar robbing on the behaviour of pollinators and the reproductive success of Tecomella undulata (Bignoniaceae) in a natural population. Experimental pollinations showed that the trees were strictly self-incompatible. The three types of floral colour morphs of the tree viz. red, orange and yellow, lacked compatibility barriers. The pollinators (Pycnonotus cafer and Pycnonotus leucotis) and the robber (Nectarinia asiatica) showed equal preference for all the morphs, as they visited each morph with nearly equal frequency and flower-handling time. The sunbirds caused up to 60% nectar robbing, mostly (99%) by piercing through the corolla tube. Although nectar is replenished at regular intervals, insufficient amount of nectar compelled the pollinators to visit additional trees in bloom. Data of manual nectar robbing from the entire tree showed that the pollinators covered lower number of flowers per tree (5 flowers/tree) and more trees per bout (7 trees/bout) than the unrobbed ones (19 flowers/tree and 2 trees bout). The robbed trees set a significantly greater amount of fruits than the unrobbed trees. However, the number of seeds in a fruit did not differ significantly. The study shows that plant-pollinator-robber interaction may benefit the self-incompatible plant species under conditions that increases the visits of pollinators among the compatible conspecifics in a population.

References

[1]  Inouye DW (1980) The terminology of floral larceny. Ecology 61: 1251–1252. doi: 10.2307/1936841
[2]  Maloof JE, Inouye DW (2000) Are nectar robbers cheaters or mutualists? Ecology 81: 2651–2661. doi: 10.2307/177331
[3]  Irwin RE, Maloof JE (2002) Variation in nectar robbing over time, space, and species. Oecologia 133: 525–533. doi: 10.1007/s00442-002-1060-z
[4]  Irwin RE, Bronstein JL, Manson JS, Richardson L (2010) Nectar robbing: Ecological and evolutionary perspectives. Annu Rev Ecol Evol Syst 41: 271–292. doi: 10.1146/annurev.ecolsys.110308.120330
[5]  Tandon R, Shivanna KR, Mohan Ram HY (2003) Reproductive biology of Butea monosperma (Fabaceae). Annals of Botany 92: 715–728. doi: 10.1093/aob/mcg193
[6]  Darwin C (1872) The effects of cross and self-fertilisation in the vegetable kingdom. Murray, London, UK.
[7]  Traveset A, Willson MF, Sabag C (1998) Effect of nectar-robbing birds on fruit set of Fuchsia magellanica in Tierra Del Fuego: a disrupted mutualism. Funct Ecol 12: 459–464. doi: 10.1046/j.1365-2435.1998.00212.x
[8]  Morris WF (1996) Mutualism denied? Nectar-robbing bumble bees do not reduce female or male success of bluebells. Ecology 77: 1451–1462. doi: 10.2307/2265542
[9]  Irwin RE, Brody AK, Waser NM (2001) The impact of floral larceny on individuals, populations, and communities. Oecologia 129: 161–168. doi: 10.1007/s004420100739
[10]  Fumero-Caban JJ, Melendez-ackerman EJ (2012) Effects of nectar robbing on pollinator behavior and plant reproductive success of Pitcairnia angustifolia (Bromeliaceae). Plant Spec Biol 28: 224–234. doi: 10.1111/j.1442-1984.2012.00388.x
[11]  Navarro L (2000) Pollination ecology of Anthyllis vulneraria subsp. vulgaris (Fabaceae): nectar robbers as pollinators. Am J Bot 87: 980–985. doi: 10.2307/2656997
[12]  Richardson SC (2004) Are nectar-robbers mutualists or antagonists? Oecologia 139: 246–254. doi: 10.1007/s00442-004-1504-8
[13]  Burkle LA, Irwin RE, Newman DA (2007) Predicting the effects of nectar robbing on plant reproduction: implications of pollen limitation and plant mating system. Am J Bot 94: 1935–1943. doi: 10.3732/ajb.94.12.1935
[14]  Genini J, Morellato LPC, Guimaraes PR Jr, Olesen JM (2010) Cheaters in mutualism networks. Biol Lett 6: 494–497. doi: 10.1098/rsbl.2009.1021
[15]  Hodges CM (1985) Bumble bee foraging: the threshold departure rule. Ecology 66: 179–187. doi: 10.2307/1941318
[16]  Galen C (1983) The effect of nectar-thieving ants on seed set in floral scent morphs of Polemonium viscosum. Oikos 41: 245–249. doi: 10.2307/3544271
[17]  Utelli AB, Roy BA (2001) Causes and consequences of floral damage in Aconitum lycoctonum at high and low elevations in Switzerland. Oecologia 127: 266–273. doi: 10.1007/s004420000580
[18]  Zhu XF, Wan JP, Li QJ (2010) Nectar robbers pollinate flowers with sexual organs hidden within corollas in distylous Primula secundiflora (Primulaceae). Biol Lett 6: 785–787. doi: 10.1098/rsbl.2010.0345
[19]  Heinrich B, Raven PH (1972) Energetics and pollination ecology. Science 176: 597–602. doi: 10.1126/science.176.4035.597
[20]  Miller TE, Travis J (1996) The evolutionary role of indirect effects in communities. Ecology 77: 1329–1335. doi: 10.2307/2265530
[21]  Klinkhamer PGL, de Jong TJ (1993) Attractiveness to pollinators: a plant's dilemma. Oikos 66: 180–184. doi: 10.2307/3545212
[22]  de Jong TJ, Waser NM, Price MV, Ring RM (1992) Plant size, geitonogamy and seed set in Ipomopsis aggregata. Oecologia 89: 310–315.
[23]  Hernandez HM, Toledo VM (1979) The role of nectar robbers and pollinators in the reproduction of Erythrina leptorhiza. Ann Missouri Bot Gard 66: 512–520. doi: 10.2307/2398843
[24]  Arizmendi MC, Dominguez CA, Dirzo R (1996) The role of an avian nectar robber and of hummingbird pollinators in the reproduction of two plant species. Funct Ecol 10: 119–27. doi: 10.2307/2390270
[25]  Bittencourt NS, Gibbs PE, Semir J (2003) Histological study of post-pollination events in Spathodea campanulata Beauv. (Bignoniaceae), a species with late-acting self-incompatibility. Ann Bot 91: 827–834. doi: 10.1093/aob/mcg088
[26]  Bittencourt Jr NS, Semir J (2004) Pollination biology and breeding system of Zeyheria montana (Bignoniaceae). Plant Sys Evol 247: 241–254. doi: 10.1007/s00606-004-0142-2
[27]  Vikas, Gautam M, Tandon R, Mohan Ram HY (2009) Pollination biology and breeding system of Oroxylum indicum in Western Himalaya. J Trop Ecol 25: 93–96. doi: 10.1017/s0266467408005634
[28]  Milet-Pinheiro P, Schlindwein C (2009) Pollination in Jacaranda rugosa (Bignoniaceae): euglossine pollinators, nectar robbers and low fruit set. Plant Biology 11: 131–141. doi: 10.1111/j.1438-8677.2008.00118.x
[29]  Pandey RP, Shetty BV, Malhotra SK (1983) A preliminary census of rare and threatened plants of Rajasthan. In: Jain SK, Rao RR, eds. An assessment of threatened plants of India Howarh: BSI, 55–62.
[30]  Negi RS, Sharma MK, Sharma KC, Kshetrapal S, Kothari SL, et al. (2011) Genetic Diversity and Variations in the Endangered Tree (Tecomella undulata) in Rajasthan. Ind J Fund Appl Life Sci 1: 50–58.
[31]  Dafni A, Kevan PG, Husband BC (2005) Practical pollination biology. Ontario: Enviroquest Ltd.
[32]  Leonard AS, Brent J, Papaj DR, Dornhaus A (2013) Floral nectar guide patterns discourage nectar robbing by bumble bees. PLoS ONE 8(2): e55914. doi: 10.1371/journal.pone.0055914
[33]  Castellanos MC, Wilson P, Thomson JD (2002) Dynamic nectar replenishment in flowers of Penstemon (Scrophulariaceae). Am J Bot 89: 111–118. doi: 10.3732/ajb.89.1.111
[34]  Castro S, Silveira P, Navarro L (2008) Consequences of nectar robbing for the fitness of a threatened plant species. Plant Ecol 199: 201–208. doi: 10.1007/s11258-008-9424-z
[35]  Gibbs PE, Bianchi M (1999) Does late-acting self-incompatibility (LSI) show family clustering? Two more species of Bignoniaceae with LSI: Dolichandra cynanchoides and Tabebuia nodosa. Ann Bot 84: 449–457. doi: 10.1006/anbo.1999.0933
[36]  Burd M (1994) Bateman's principle and plant reproduction: the role of pollen limitation in fruit and seed set. The Botanical Review 60: 83–139. doi: 10.1007/bf02856594
[37]  Bittencourt Jr NS, Pereira Jr EJ, de Souza Saint-James P, Semir J (2011) The reproductive biology of Cybistax antisyphilitica (Bignoniaceae), the characteristic tree of the South American savannah-like “cerrado” vegetation. Flora-Morphology, Distribution, Functional Ecology of Plants, 206 (10): , 872–886.
[38]  Schemske DW, Horvitz CC (1984) Variation among floral visitors in pollination ability: a precondition for mutualism specialization. Science 225: 519–521. doi: 10.1126/science.225.4661.519
[39]  Sugden EA (1986) Anthecology and pollinator efficacy of Styrax officinale subsp. redivivum (Styracaceae). Am J Bot 73: 919–930. doi: 10.2307/2444305
[40]  Faegri K, van der Pijl L (1979) The principles of pollination ecology. Oxford: Pergamon Press.
[41]  Hodges SA (1995) The influence of nectar production on hawkmoth behavior, self-pollination, and seed production in Mirabilis multiflora (Nyctaginaceae). Am J Bot 82: 197–204. doi: 10.2307/2445527
[42]  Roubik DW (1982) The ecological impact of nectar-robbing bees and pollinating hummingbirds on a tropical shrub. Ecology 63: 354–360. doi: 10.2307/1938953
[43]  Irwin RE, Brody AK (1998) Nectar robbing in Ipomopsis aggregata: effects on pollinator behavior and plant fitness. Oecologia 116: 519–527. doi: 10.1007/s004420050617
[44]  Knox RB, Kenrick J, Jobson S, Dumas C (1989) Reproductive function in the Mimosoid legume Acacia retinodes: ultrastructural and cytochemical characteristics of stigma receptivity. Austral J Bot 37: 103–124. doi: 10.1071/bt9890103
[45]  Pyke GH (1991) How much does floral nectar cost? Nature 350: 58–59. doi: 10.1038/350058a0
[46]  Irwin RE (2000) Hummingbird avoidance of nectar-robbed plants: spatial location or visual cues. Oikos 91: 499–506. doi: 10.1034/j.1600-0706.2000.910311.x
[47]  Maloof JE (2001) The effects of a bumble bee nectar robber on plant reproductive success and pollinator behaviour. Am J Bot 88: 1960–1965. doi: 10.2307/3558423
[48]  Wang Y (2013) Dynamics of plant-pollinator-robber systems. J Math Biol 66: 1155–1177. doi: 10.1007/s00285-012-0527-8
[49]  Morris FM, Vazquez DP, Chacoff NP (2010) Benefits and cost curves for typical pollination mutualism. Ecology 91: 1276–1285. doi: 10.1890/08-2278.1

Full-Text

comments powered by Disqus